5 APM Techniques to Troubleshoot Application Slow Down in Minutes
October 27, 2014

Payal Chakravarty
IBM

Share this

Applications are getting more complex by the day. First you have the various hosting platforms that your app can span across like private cloud, public cloud, your own data center.

Second, you have applications for the web being accessed through different browsers and mobile apps being accessed from several hundred different devices and various device OSs.

Third, the same app is being accessed from around the world, 24X7.

Fourth, the number of users accessing apps have grown significantly requiring rapid scalability of the app's infrastructure.

To top it all, users, today, have very little patience to deal with poor performance.

Application Performance Management (APM) tools have evolved over the last decade to cater to this complexity and yet be able to troubleshoot application performance issues quickly. Let us look at some of the key features and visualization techniques that are enabling quicker troubleshooting:

1. End User Experience Metrics sliced by different dimensions

As an app developer or app owner, the first step to troubleshooting a performance problem is to narrow the scope of it. By comparing how long it is taking a web page to load for a user using your app through Firefox on Mac vs how long it is taking for the same web page to load for a user using Chrome on iOS, you can narrow down which browser and device to troubleshoot on. You could also compare how long the response time is for a user in California vs a user in Australia when accessing the same page and executing the same transaction. By slicing and dicing response time by various dimensions like geography, browser, device, network carrier etc isolation of problem areas have become easier.

2. Code level stack traces

For every business transaction that fails or is slow, you can find out what line of code is causing the slowdown by looking at its stack trace. APM tools today show the class name, method name and exact line of source code (e.g., SQL query, line number of code in a specific browser session trace) that led to a slow request. Further, you can see the pre- and post-code deployment patterns for your apps.

3. Transaction Topologies

Today, APM tools can automatically discover your end-to-end distributed application environment in minutes, showing you a topological view of all the components that your app depends on and hence aid visual detection of bottlenecks. A few of these tools not only show an aggregated transaction topology, but also show the detailed topological mapping for single transaction instances, capturing network hops and sub-transaction nodes to help you see where the time is spent during that instance. With the evolution of big data technologies, it is now possible to capture 100% transactions instead of sampling. This ensures you will not lose out on any key business transactions that may have failed.

4. Log analytics

Searching for errors across application stacks can be a laborious task. Earlier, while troubleshooting, operators, administrators and app owners would have to look through logs from different components independently, in silos. With integrated log analytics, you can now search for errors across log files for any component in your app stack in the context of the application. For example, you can correlate errors in your app server with an error in your database that may be impacting a transaction.

5. One pane-of-glass to view health of all components in the app stack

As opposed to looking at multiple panes of glass to see details of your application's health, today, at a glance in one UI you will be able to visualize the detailed health of all your app components. Spotting the problem area is as easy as spotting a color difference. For example, key metrics — like Garbage collection statistics from your code's runtime, memory usage of your VM, space utilization of your database server, bandwidth utilization of your network, http request response times of your web requests — can all be seen in one user interface.

With the evolution of big data, improved algorithms for search and correlation, smart dashboards/visualization and diagnostic capabilities, APM tools have matured to provide insights that you could never have before, thereby cutting troubleshooting time from days to minutes.

Payal Chakravarty is Senior Product Manager for IBM Application Performance Management.

Share this

The Latest

May 25, 2017

According to most industry perceptions, application performance management (APM) and application portfolio management (APM) might seem to be worlds apart — or at best connected by a very thin thread. In this blog, I'd like to highlight three areas that are bridging the APM-to-APM divide: digital experience management, application discovery and dependency mapping (ADDM), and agile/DevOps lifecycle planning ...

May 24, 2017

In today's digital world, it is possible to gauge the cost implications of an IT outage on employee productivity, revenue generation but it is usually much more tricky to measure the negative impacts on the very IT people's lives ...

May 22, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 5 offers some interesting final thoughts ...

May 19, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 4 covers automation and the dynamic IT environment ...

May 18, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 3 covers monitoring and user experience ...

May 17, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 2 covers visibility and data ...

May 16, 2017

Managing application performance today requires analytics. IT Operations Analytics (ITOA) is often used to augment or built into Application Performance Management solutions to process the massive amounts of metrics coming out of today's IT environment. But today ITOA stands at a crossroads as revolutionary technologies and capabilities are emerging to push it into new realms. So where is ITOA going next? With this question in mind, APMdigest asked experts across the industry — including analysts, consultants and vendors — for their opinions on the next steps for ITOA ...

May 15, 2017

Digital transformation initiatives are more successful when they have buy-in from across the business, according to a new report titled Digital Transformation Trailblazing: A Data-Driven Approach ...

May 11, 2017

The growing market for analytics in IT is one of the more exciting areas to watch in the technology industry. Exciting because of the variety and types of vendor innovation in this area. And exciting as well because our research indicates the adoption of advanced IT analytics supports data sharing and joint decision making in a way that's catalytic for both IT and digital transformation ...

May 10, 2017

Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and the challenges and recommendations for AIOps adoption ...