Big Data Trends to Watch in 2017
Ovum predicts machine learning will be the big disruptor
January 06, 2017

Tony Baer
Ovum

Share this

Big data continues to be the fastest-growing segment of the information management software market. New findings released by Ovum estimate that the big data market will grow from $1.7bn in 2016 to $9.4bn by 2020, comprising 10% of the overall market for information management tooling.

Ovum’s 2017 Trends to Watch: Big Data report highlights that while the breakout use case for big data in 2017 will be streaming, machine learning will be the factor that disrupts the landscape the most.

Key 2017 trends:

■ Machine learning will be the biggest disruptor for big data analytics in 2017.

■ Making data science a team sport will become a top priority.

■ IoT use cases will push real-time streaming analytics to the front burner.

■ The cloud will sharpen Hadoop-Spark “co-opetition.”

■ Security and data preparation will drive data lake governance.

Under the covers, machine learning is already becoming ubiquitous as it is embedded in many services that consumers take for granted. Increasingly, machine learning is becoming embedded in enterprise software and tooling for integrating and preparing data. Machine learning is placing a stress on enterprises to make data science a team sport; a big area for growth in 2017 will be solutions that spur collaboration, so the models and hypotheses that data scientists develop do not get bottled up on their desktops.

Fastest-Growing Use Case: Real-Time Streaming

While machine learning continues to grab the headlines, real-time streaming will become the fastest-growing use case.

A perfect storm has transformed real-time streaming from a niche technology to one with broad, cross-industry appeal. Open source technology has lowered barriers to entry for both technology providers and customers; scalable commodity infrastructure has made the processing of large torrents of real-time data in motion economically and technically feasible.

The explosion in bandwidth and smart-sensor technology has opened up use cases ranging from location-based marketing to health and safety, intrusion detection, and predictive maintenance, appealing to a broad cross section of industries.

Underscoring and enabling the growth of big data is the growing predominance of cloud computing as the default path to deployment.

Cloud Dominates Big Data

Within the next 24 months, Ovum expects that the cloud will pass the halfway mark to dominate new big data deployments.

Big data has emerged from its infancy to transition from buzzword to urgency for enterprises across all major sectors. The growing pains are being abetted by machine learning, which will lower barriers to adoption of big data-enabled analytics and solutions, and the growing dominance of the cloud, which will ease deployment hurdles.

Tony Baer is Principal Analyst for Information Management at Ovum.

Share this

The Latest

April 24, 2017

The Internet of Things (IoT) is increasingly present in our daily lives, at work, in the home and in the public sphere, making the world a more connected place. In fact, 2020 will see at least 20 billion connected devices across the globe. So, let's take a look at the most common iterations of the IoT at the moment, and what we can expect to see in the IoT landscape over the next 5 years ...

April 21, 2017

In the spirit of Earth Day, which is Saturday, April 22, we recently asked IT professionals for the tips and tricks they're using to help keep their data centers as green as possible. Here are a few ideas inspired by the responses we got ...

April 20, 2017

Almost One-Third (28 percent) of IT workers surveyed fear that cloud adoption is putting their job at risk, according to a survey conducted by ScienceLogic ...

April 19, 2017

A majority of senior IT leaders and decision-making managers of large companies surveyed around the world indicate their organizations have yet to fully embrace the aspects of IT Transformation needed to remain competitive, according to a new study conducted by Enterprise Strategy Group (ESG) ...

April 18, 2017

The move to cloud-based solutions like Office 365, Google Apps and others is one of the biggest fundamental changes IT professionals will undertake in the history of computing. The cost savings and productivity enhancements available to organizations are huge. But these savings and benefits can't be reaped without careful planning, network assessment, change management and continuous monitoring. Read on for things that you shouldn't do with your network in preparation for a move to one of these cloud providers ...

April 17, 2017

One of the most ubiquitous words in the development and DevOps vocabularies is "Agile." It is that shining, valued, and sometimes elusive goal that all enterprises strive for. But how do you get there? How does your organization become truly Agile? With these questions in mind, DEVOPSdigest asked experts across the industry — including analysts, consultants and vendors — for their opinions on the best way for a development or DevOps team to become more Agile ...

April 12, 2017

Is composable infrastructure the right choice for your IT environment? The following are 5 key questions that can help you begin to explore the capabilities of composable infrastructure and its applicability within your own IT environment ...

April 11, 2017

What is composable infrastructure, and is it the right choice for your IT environment? That's the question on many CIOs' minds today as they work to position their organizations as "digitally driven," delivering better, deeper, faster user experiences and a more agile response to change in whatever vertical market you do business in today ...

April 10, 2017

As companies adopt new hardware and applications, their networks grow larger and become harder to manage. For network engineers and administrators, the continued emergence of integrated technology has forced them to reconfigure and manage networks in a more dynamic way ...

April 07, 2017

The complexity of data in motion is growing and risks undermining the success of the modern data-driven enterprise. A recent survey of data engineers and architects, conducted by StreamSets, sought to bring some perspective to the new reality in the enterprise, leading to some interesting insights about the enterprise data landscape ...