Fixing and Preventing Application Outages: 5 Questions That Just Might Save Your Network
May 10, 2016

Akhil Sahai
Perspica

Share this

Why do outages of mission-critical applications still happen? Aren't there multiple solutions that can alert IT teams to problems? Yes – and that can be part of the problem. One alarm goes off, and then another and another until the team is quickly overwhelmed. By the time an incident like this is brought under control, the company may have lost on average as much as $750,000 for a 90-minute outage, according to the Ponemon report, Cost of Data Center Outages, in addition to loss of face and damage to brand value.

What typically happens next is that forensic experts go through multiple product consoles and logs to identify the cause of an incident, and the blame gets passed around as time ticks away. But deep machine learning-based, root-cause analytics and predictive analytics technologies are helping organizations dramatically prevent such incidents and reduce mean time to repair.

In a digital-first world, teams must manage unparalleled amounts of data while predicting and preventing outages, in real time, while maintaining and delivering agile, reliable applications. The problem is that most organizations must tap several different siloed vendor tools to assist in the monitoring, identifying, mitigation and remediation of incidents and hope that they speak to each other, which traditionally hasn't happened.

IT infrastructure keeps changing from physical to hybrid and multi-cloud environments, and new architectures keep arising. Consequently, it is becoming impossible for IT administrators to keep up with the multitude of objects, with thousands of metrics generating data in near-real time.

Applications in today's environments need to be reliable and secure within these high performance environments, so new approaches must be employed to provide intelligence. Automated, self-learning solutions that analyze and provide insight into applications and infrastructure topologies are essential in this transformation.

The New Language of Monitoring Tools

Vendors are throwing around phrases like "big data" and "machine learning" because organizations understand that these features can help them tackle the complex needs of application performance. But what do they really mean?

Machine Learning: Machine learning is self-learning, supervised or unsupervised algorithms that can be based on neural networks, statistics or Digital Signal Processing et al.

Big Data Architecture: A framework for managing masses of structured and unstructured data in an automated, highly scalable way using open source technologies.

Domain Knowledge: Questions about what happened, what caused it, how to remediate it and prevent it from happening again – the domain knowledge in TechOps and DevOps helps answer them.

5 Questions About Your Monitoring Solution

Ask these 5 questions before moving forward with a monitoring solution that can address application outages:

1. Immediate Intelligence: Does the solution identify in real time, those alarms that need immediate attention?

2. Scalability: Does the solution scale and is it able to handle millions of objects?

3. Automation: Does it quickly pinpoint the root cause of the problem and identify how to fix it, rather than relying on expensive domain experts?

4. Communal Wisdom: Do you have access to tribal knowledge such as vendor knowledge bases, discussion forums and the latest state-of-the-art technologies in order to help teams remediate incidents quickly and efficiently?

5. Prevention: Historically, monitoring tools send alerts only after a problem has already occurred or when the rules and set thresholds are violated, but the key to preventing outages is to predict issues in advance. Does the solution provide alerts to anomalous trends or potentially dangerous issues before they impact your application?

Yesterday's siloed IT management tools tend not to communicate with each other, causing confusion and over-alerting. This makes it difficult, if not impossible, for IT teams to determine what's worth investigating and what's not – paving the way for service disruptions and breaches. Fortunately, today's solutions offer real-time insight and recommendations for remediation, as well as analytics that can predict trouble so you can stop problems before they start.

Akhil Sahai, Ph.D., is VP Product Management at Perspica.

Share this

The Latest

June 26, 2017

Many organizations are struggling to resolve customer-impacting incidents quickly enough to preserve brand loyalty and revenue, according to PagerDuty's recent State of Digital Operations Report ...

June 23, 2017

"Become the Automator, Not the Automated." While it's a simple enough phrase, it speaks directly to how today's organizations and IT teams must innovate to remain competitive. A critical aspect of innovation is acknowledging the digital transformation of businesses. The move to digitalization enables organizations to more effectively unlock the power of information technology (IT) to fuel and accelerate business innovation. It is a competitive weapon and a survival imperative ...

June 22, 2017

Executives in the US and Europe now place broad trust in Artificial Intelligence (AI) and machine learning systems, designed to protect organizations from more dynamic pernicious cyber threats, according to Radware's 2017 Executive Application & Network Security Survey ....

June 21, 2017

While IT service management (ITSM) has too often been viewed by the industry as an area of reactive management with fading process efficiencies and legacy concerns, a new study by Enterprise Management Associates (EMA) reveals that, in many organizations, ITSM is becoming a hub of innovation ...

June 20, 2017

Cloud is quickly becoming the new normal. The challenge for organizations is that increased cloud usage means increased complexity, often leading to a kind of infrastructure "blind spot." So how do companies break the blind spot and get back on track? ...

June 19, 2017

Hybrid IT is becoming a standard enterprise model, but there’s no single playbook to get there, according to a new report by Dimension Data entitled The Success Factors for Managing Hybrid IT ...

June 16, 2017

Any mobile app developer will tell you that one of the greatest challenges in monetizing their apps through video ads isn't finding the right demand or knowing when to run the videos; it's figuring out how to present video ads without slowing down their apps ...

June 15, 2017

40 percent of UK retail websites experience downtime during seasonal peaks, according to a recent study by Cogeco Peer 1 ...

June 14, 2017

Predictive analytics is a popular ITOA technology that you can leverage to improve your business by leaps and bounds. Predictive analytics analyzes relationships among various data points to predict behavioral trends, growth opportunities and risks, which can add critical value to your business. Here are a few questions to help you decide if predictive analytics is right for your business ...

June 13, 2017

Many organizations are at a tipping point, as new technology demands are set to outstrip the skills supply, according to a new Global Digital Transformation Skills Study by Brocade ...