5 Ways to Gain Operational Insights on Big Data Analytics
April 20, 2015

Michael Segal
NetScout Systems

Share this

We are starting to see an age where speed-of-thought analytical tools are helping to quickly analyze large volumes of data to uncover market trends, customer preferences, gain competitive insight and collect other useful business information. Likewise, utilizing ‘big data’ creates new opportunities to gain deep insight into operational efficiencies.

The realization by business executives that corporate data is an extremely valuable asset, and that effective analysis of big data may have a profound impact on their bottom line is the key driver in the adoption of this trend. According to IDC, the big data and analytics market will reach $125 billion worldwide in 2015, which will help enterprises across all industries gain new operational insights.

Effective integration of big data analytics within corporate business processes is critical to harness the wealth of knowledge that can be extracted from corporate data. While a variety of structured and unstructured big data is stored in large volumes on different servers within the organization, virtually all this data traverses the network at one time or another. Analysis of the traffic data traversing the network can provide deep operational insight, provided there is an end-to-end holistic visibility of this data.

To ensure holistic visibility, the first step is to select a performance management platform that offers the scalability and flexibility needed to analyze large volumes of data in real-time.

The solution should also include packet flow switches to enable passive and intelligent distribution of big data that traverses the network to the different location where the data is analyzed.

Here are five ways IT operations can use Big Data analytics to achieve operational efficiencies:

1. Holistic end-to-end visibility

A holistic view, from the data center and network to the users who consume business services, helps IT see the relationships and interdependencies across all service delivery components; including applications, network, servers, databases and enabling protocols in order to see which user communities and services are utilizing the network and how they’re performing.

2. Big Data analysis based on deep packet inspection

Deep packet analysis can be used to generate a metadata at an atomic level which provides comprehensive, real-time view of all service components, including physical and virtual networks, workloads, protocols, servers, databases, users and devices to help desktop, network, telecom and application teams see through the same lens.

3. Decreased downtime

A Forrester survey shows 91% of IT respondents cite problem identification as the number one improvement needed in their organization’s IT operations. As applications and business services’ complexity increases, reducing costly downtime will hinge on proactively detecting service degradations and rapid triage to identify its origin, which can be done through the right performance management platform.

4. Capacity planning

Accurate evidence is vital when it comes to making capacity planning decisions for your network and business processes. Benefits of metadata at an atomic level will aid in understanding the current and future needs of your organization’s services, applications and its community of users in order to identify how resources are being consumed.

5. Hyper scalability

Big data analytic tools that can scale to increasing data traffic flows provide key vantage points throughout your IT environment and offer rapid insight to meet the monitoring needs of high-density locations in data center and private/hybrid cloud deployments to help organizations achieve consistent service quality and operational excellence.

Network traffic Big Data analytics, made possible by today’s service performance management platforms, is changing the scope and quality of IT operational efficiencies. These platforms and technologies are not only protecting organizations against service degradations and downtime, but also serve to add new dimensions and context around interactive data making corporate data today an extremely valuable asset.

Michael Segal is Director, Solutions Marketing and Alliances for NetScout Systems

Share this

The Latest

May 22, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 5 offers some interesting final thoughts ...

May 19, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 4 covers automation and the dynamic IT environment ...

May 18, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 3 covers monitoring and user experience ...

May 17, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 2 covers visibility and data ...

May 16, 2017

Managing application performance today requires analytics. IT Operations Analytics (ITOA) is often used to augment or built into Application Performance Management solutions to process the massive amounts of metrics coming out of today's IT environment. But today ITOA stands at a crossroads as revolutionary technologies and capabilities are emerging to push it into new realms. So where is ITOA going next? With this question in mind, APMdigest asked experts across the industry — including analysts, consultants and vendors — for their opinions on the next steps for ITOA ...

May 15, 2017

Digital transformation initiatives are more successful when they have buy-in from across the business, according to a new report titled Digital Transformation Trailblazing: A Data-Driven Approach ...

May 11, 2017

The growing market for analytics in IT is one of the more exciting areas to watch in the technology industry. Exciting because of the variety and types of vendor innovation in this area. And exciting as well because our research indicates the adoption of advanced IT analytics supports data sharing and joint decision making in a way that's catalytic for both IT and digital transformation ...

May 10, 2017

Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and the challenges and recommendations for AIOps adoption ...

May 09, 2017

In APMdigest's exclusive interview, Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and how it will impact ITOA and APM ...

May 05, 2017

Microsoft is expected to essentially wind down Windows 7 support by 2020 so inevitably Windows 10 will be on the IT task list. It would be beneficial, now, to examine some of the issues relating to migrating to Windows 10 OS and how these pain points can be alleviated and addressed. Here are 7 practices that are key to facilitating migration ...