Introducing the Performance Analytics and Decision Support (PADS) Framework - Part Two
April 10, 2014

Gabriel Lowy
Tech-Tonics

Share this

The PADS Framework, for Performance Analytics and Decision Support, represents a more holistic approach to adaptive, proactive and predictive operational data management and analysis. The framework links advanced performance management and big data analytics technologies to enable organizations to gain deep and real-time visibility into, and predictive intelligence from, increasingly complex virtualized and mobile systems across the entire application delivery chain.

Start with Part One of Introducing the Performance Analytics and Decision Support (PADS) Framework

The PADS framework connects unified next-generation performance management and operational intelligence technologies into holistic, integrated platforms that consolidate multiple previously discrete functions. These platforms work in concert, as performance data analytics provides physical and logical knowledge of the computing environment to allow for more powerful and granular data queries, discovery and manipulation.

Expect these platforms to evolve further toward operational intelligence by expanding the types of data sources they can collect and correlate. They will also drive deeper into analytics, including predictive capabilities, to allow IT – and eventually, line of business users – to monitor the performance of services more granularly.

The performance analytics platform incorporates network, infrastructure, application and business transaction monitoring (NPM/IPM/APM/BTM), which feeds an advanced correlation and analytics engine. A single unified view of all components that support a service facilitates the management of service delivery and problem resolution.

Within a PADS framework, users can then feed this information about the application delivery chain and user experience upstream into an operational intelligence (OI) platform. The OI platform can then integrate this data with other types of information to improve decision making throughout the organization.

An OI platform not only ingests data from performance analytics platforms, but a far wider variety of machine and streaming data that are in semi-structured or unstructured formats. Consolidating this data to make it readily searchable can reveal previously undetected patterns or unique events. OI platforms provide a more unified view of events, which are often delivered from multiple streams as messages, to enable more efficient correlation and analysis.

The twin missions of the framework are to:

1. Allow IT to be more proactive in anticipating, identifying and resolving performance problems by focusing on user/customer experience.

2. Enable IT to become a strategic provider and orchestrator of internally and externally sourced services to business units that can leverage operational intelligence.

Ultimately, the PADS Framework can help organizations achieve the three return on investment (ROI) objectives:

1. Reducing costs

2. Enhancing productivity

3. Generating incremental revenues

PADS can also be used to secure valuable systems and data, thereby reducing operational risk while ensuring compliance with GRC (governance, regulatory, compliance) mandates.

Analytics: Going Beyond Montitoring

The PADS framework goes beyond real-time monitoring to offer predictive analytics, which is one of the most important market trends. Another is the ability to scale to big data requirements and interface with newer NoSQL databases. In addition to providing pre-emptive warnings of systems failure, the framework assures application availability and user experience as well as flexible scaling.

The performance analytics platform includes real-time analysis of application and service performance across both physical and virtual environments by dynamically tracking, capturing and analyzing complex service delivery transactions across multi-domain IP networks.

Deep-dive analytics allow IT organizations to be more proactive by pinpointing the root cause of problems before users call the help desk and before a visitor departs a website. Correlation and analytics engines must include key performance indicators (KPIs) as guideposts to align with critical business processes. Capabilities should include data visualization to facilitate mapping resource and application dependencies and allow modeling of applications to detect patterns and predict points of failure.

Data mining that entails analysis of data to identify trends, patterns or relationships among the operational data can be used to build predictive models. Today, modeling is being facilitated by tools that automate iterative, labor-intensive processes. Newer technologies require little or no programming and can be implemented quickly with cloud-based solutions. Predictive models can now be developed by line of business users to improve a business function or process.

The key to success for the PADS framework is providing correlation and analytics engines that feed into customizable dashboards. The ability to quickly visualize and interpret a problem or opportunity that results in actionable decisions is how to derive the most value from the platforms that underlie the framework.

Gabriel Lowy is a Leading Technology Analyst and the Founder of Tech-Tonics Advisors, a strategic marketing and messaging consulting firm for technology companies.

Share this

The Latest

June 26, 2017

Many organizations are struggling to resolve customer-impacting incidents quickly enough to preserve brand loyalty and revenue, according to PagerDuty's recent State of Digital Operations Report ...

June 23, 2017

"Become the Automator, Not the Automated." While it's a simple enough phrase, it speaks directly to how today's organizations and IT teams must innovate to remain competitive. A critical aspect of innovation is acknowledging the digital transformation of businesses. The move to digitalization enables organizations to more effectively unlock the power of information technology (IT) to fuel and accelerate business innovation. It is a competitive weapon and a survival imperative ...

June 22, 2017

Executives in the US and Europe now place broad trust in Artificial Intelligence (AI) and machine learning systems, designed to protect organizations from more dynamic pernicious cyber threats, according to Radware's 2017 Executive Application & Network Security Survey ....

June 21, 2017

While IT service management (ITSM) has too often been viewed by the industry as an area of reactive management with fading process efficiencies and legacy concerns, a new study by Enterprise Management Associates (EMA) reveals that, in many organizations, ITSM is becoming a hub of innovation ...

June 20, 2017

Cloud is quickly becoming the new normal. The challenge for organizations is that increased cloud usage means increased complexity, often leading to a kind of infrastructure "blind spot." So how do companies break the blind spot and get back on track? ...

June 19, 2017

Hybrid IT is becoming a standard enterprise model, but there’s no single playbook to get there, according to a new report by Dimension Data entitled The Success Factors for Managing Hybrid IT ...

June 16, 2017

Any mobile app developer will tell you that one of the greatest challenges in monetizing their apps through video ads isn't finding the right demand or knowing when to run the videos; it's figuring out how to present video ads without slowing down their apps ...

June 15, 2017

40 percent of UK retail websites experience downtime during seasonal peaks, according to a recent study by Cogeco Peer 1 ...

June 14, 2017

Predictive analytics is a popular ITOA technology that you can leverage to improve your business by leaps and bounds. Predictive analytics analyzes relationships among various data points to predict behavioral trends, growth opportunities and risks, which can add critical value to your business. Here are a few questions to help you decide if predictive analytics is right for your business ...

June 13, 2017

Many organizations are at a tipping point, as new technology demands are set to outstrip the skills supply, according to a new Global Digital Transformation Skills Study by Brocade ...