Using Machine Learning Analytics to Help Meet SLAs
October 11, 2016

Jerry Melnick
SIOS Technology

Share this

The first post in this two-part series introduced machine learning analytics as a new way to find and fix the root cause of performance problems to help meet SLAs. This post explains three ways MLA can be used to better utilize resources for optimal performance.

The first way MLA helps make certain needed performance is delivered while optimally use resources is by providing the accurate information needed for IT to tune VM configurations settings. IT managers today have poor insight into the causes of poor application performance. To be extra careful, they often throw a lot of hardware at the problem in an attempt to avoid the possibility of starving the applications.

In many cases applications can be over provisioned by as much as 80 percent. Under provisioning VMs is less common but equally problematic and can lead to very poor performance. Traditional processes for right-sizing VMs, is time-consuming, error-prone and inaccurate. IT administrators need the skill, time, and tools to run multiple reports, and then manually assemble their findings to approximate the right settings.

In contrast, MLA continuously and automatically observes resource utilization patterns using real-time data from the environment to identify over- and undersized VMs and then recommends precise configuration settings to right-size the VM for performance. And if usage changes, MLA will dynamically update recommendations.

The second way MLA helps improves utilization and save money is by finding unused or wasted resources. Among the many advantages of virtualization is the ease with which VMs can be set up and torn down and how storage can be dynamically allocated. But when unused VM’s or storage snapshots are left to languish, they waste precious resources. And these situations can be extremely difficult to identify given some of these may be seemingly unused when in fact they are being used! Removing these in error could be disastrous, so IT leaves them there.

MLA solves this by observing patterns of behavior over time over multiple dimensions to identify which VM’s are truly inactive and which storage snapshots are safe to be freed up. It then recommends precisely how to recover the waste. Once again eliminating the guess work.

Some MLA systems also provide a complete summary of savings that could be achieved by removing wasted resources and right sizing VM’s. They provide comprehensive reports that include not only the saving in hardware resources, but also the savings in software licensing that can be achieved by reducing the number of hosts and VMs.

The third way machine learning analytics helps optimize resource allocations for peak performance is by identifying those applications that would benefit the most from storage acceleration through the use of all-flash arrays or host-based caching (HBC). Storage acceleration delivers substantial improvements in throughput performance by increasing I/O operations per second (IOPS). But to be successful, IT managers need to verify that a) the root cause of their performance issue is related to storage performance and b) that they have chosen the right VMs and configured the storage acceleration optimally. Today, most use a trial-and-error approach and best guess usually using simple single dimension measurements from storage tools.

Machine learning is ideal for delivering the right information to make the decisions regarding which VMs need acceleration and how best configure them. Some MLA systems are also able to perform a simulation to estimate the likely increase in IOPS, which enables the IT department to prioritize the implementation effort.

Machine learning analytics brings machine derived intelligence to task of optimally configuring the infrastructure taking the guesswork out of many aspects involved in meeting SLAs more efficiently and cost-effectively. And with the technology advancing rapidly, its future holds tremendous potential for many new and even more powerful capabilities.

Jerry Melnick is President and CEO of SIOS Technology.

Share this

The Latest

March 24, 2017

A growing IT delivery gap is slowing down the majority of the businesses surveyed and directly putting revenue at risk, according to MuleSoft's 2017 Connectivity Benchmark Report on digital transformation initiatives and the business impact of APIs ...

March 23, 2017

Why containers are growing in popularity is no surprise — they’re extremely easy to spin up or down, but come with an unforeseen issue. Without the right foresight, DevOps and IT teams may lose a lot of visibility into these containers resulting in operational blind spots and even more haystacks to find the presumptive performance issue needle ...

March 22, 2017

Much emphasis is placed on servers and storage when discussing Application Performance, mainly because the application lives on a server and uses storage. However, the network has considerable importance, certainly in the case of WANs where there are ways of speeding up the transmission of data of a network ...

March 21, 2017

The majority of IT executives believe investment in IT Service Management (ITSM) is important to gain the agility needed to compete in an era of global, cross-industry disruption and digital transformation, according to Delivering Value to Today’s Digital Enterprise: The State of IT Service Management 2017, a report by BMC, conducted in association with Forbes ...

March 17, 2017

Let’s say your company has examined all the potential pros and cons, and moved your critical business applications to the cloud. The advertised benefits of the cloud seem like they’ll work out great. And in many ways, life is easier for you now. But as often happens when things seem too good to be true, reality has a way of kicking in to reveal just exactly how many things can go wrong with your cloud setup – things that can directly impact your business ...

March 16, 2017

IT leadership is more driven to be innovative than ever, but also more in need of justifying costs and showing value than ever. Combining the two is no mean feat, especially when individual technologies are put forward as the single tantalizing answer ...

March 15, 2017

The move to Citrix 7.X is in full swing. This has improved the centralizing of Management and reduction of costs, but End User Experience is becoming top of the business objectives list. However, delivering that is not something to be considered after the upgrade ...

March 14, 2017

As organizations understand the findings of the Cyber Monday Web Performance Index and look to improve their site performance for the next Cyber Monday shopping day, I wanted to offer a few recommendations to help any organization improve in 2017 ...

March 13, 2017

Online retailers stand to make a lot of money on Cyber Monday as long as their infrastructure can keep up with customers. If your company's site goes offline or substantially slows down, you're going to lose sales. And even top ecommerce sites experience performance or stability issues at peak loads, like Cyber Monday, according to Apica's Cyber Monday Web Performance Index ...

March 10, 2017

Applications and infrastructure are being deployed and commissioned at a faster rate than ever before, the number of tools it takes to effectively manage these services is multiplying, and the expectations placed on IT to ensure customer satisfaction is increasing, according to The State of Monitoring 2017 report from BigPanda ...