As organizations strive to advance digital acceleration efforts, outpace competitors, and better service customers, the path to better, more secure software lies in AIOps.
Coined by Gartner in 2016, AIOps — or AI for IT operations — has become an IT best practice only in the past few years. In short, AIOps offers developers and their DevOps and SRE teams a fast and automated solution for delivering observability (and precise insights) into their production environments at scale — making it easier for those teams to troubleshoot problems, identify root causes and remediate issues before they can impact the end-user experience or hinder the business bottom line.
Over the course of the next year, organizations expect production deployments to grow by 10x the current deployment rates, but as those deployments skyrocket, output volumes and production processes will also grow in complexity. An AIOps solution should be able to scale to meet that volume and process accordingly, but the fact is, not all can. Scalability and operational efficiency are only as effective as the AIOps solution you're leveraging.
As DevOps teams continue to adopt progressive delivery models — like Canary, Blue/Green and Feature Flags for upgrading and replacing individual services — and the volume of production deployments and configuration changes sees even more growth, here are a few of the things that your DevOps teams should keep in mind, as they look to make the most of their IT toolkits via AIOps:
1. Create test-driven operations
Bolster your AIOps' resiliency by testing auto-remediation scripts before entering production, rather than reactively.
For example, SREs can orchestrate a pre-production environment that's monitored by the AIOps solution. By loading tests and injecting chaos into this "test-driven operations" environment, and using it to validate auto-remediation scripts, your AIOps solution's capability for deploying auto-remediation code when an issue (inevitably) arises is further validated. Instead of SREs scripting and deploying code reactively (once an issue has been experienced), AIOps can deploy it proactively — fixing the issue immediately, thanks to having been "battle tested" for those scenarios in advance.
2. Push deployment/configuration data to AIOps
Linking events to a monitored entity makes it easier for AIOps to analyze and correlate behavior — necessary for going beyond simple correlations, to provide instead, more precise root cause answers. Pushing contextual deployment information (i.e., deployment, load test, load balance, configuration changes, service restart, etc.) to AIOps makes it possible to immediately alert teams when behavior changes negatively affect users and service-level agreements (SLAs). Making it easier to raise awareness of and remediate the issue before it can impact the end user.
3. Let AIOps drive your decisions
Pushing deployment info and context to AIOps creates even more awareness around delivery activities, providing a new source of data for DevOps teams to draw from to better inform future decision making.
AIOps solutions, which can generate data within their own dashboards, can better provide teams with choices and context in comparing test run and baseline results — drawing from multiple tests and deployments to identify regressions occurring during or between tests. Pushing this information to AIOps, in turn, further accelerates the software delivery pipeline and facilitates quick remediation for the delivery process.
4. Generate automated, operational resiliency
Resiliency and adaptiveness to change are key indicators of production quality today. AIOps solutions can ensure continuous resiliency, availability, and system health by automating manual operational tasks.
What's more, integrating AIOps with delivery automation sends configuration and deployment context directly to the solution, further enabling AIOps to better pinpoint root causes of abnormal behavioral changes; alert teams if or when a load test in production starts to affect overall system health; alert app teams if new service iterations are causing high failure rates; and provide detailed root-cause analysis on impact.
Today, greater operational resiliency means fewer issues, more consistent and reliable performance, and more robust digital experiences — all wins for DevOps teams and their customers.
As today's IT environments become increasingly dynamic, containerized, multi-cloud and multi-cluster, it's more essential for DevOps teams to capitalize on the power and productivity afforded by AIOps: driving business results, customer experiences and critical business outcomes effectively and at scale. Make sure your teams are equipped with the right AIOps toolkits is the first step in optimizing your AIOps journey. From there, leveraging those toolkits effectively is the best way to ensure that you're getting the most ROI out of your AIOps.
The Latest
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 3 covers OpenTelemetry, DevOps and more ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 2 covers AI's impact on Observability, including AI Observability, AI-Powered Observability and AIOps ...
The Holiday Season means it is time for APMdigest's annual list of predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how Observability, APM, AIOps and related technologies will evolve and impact business in 2025 ...
Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences ... As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings ...
We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...
From the accelerating adoption of artificial intelligence (AI) and generative AI (GenAI) to the ongoing challenges of cost optimization and security, these IT leaders are navigating a complex and rapidly evolving landscape. Here's what you should know about the top priorities shaping the year ahead ...
In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...
In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...