Performance Analytics is Key to PADS Framework
PADS (Performance Analytics and Decision Support) Framework Components
June 22, 2015

Gabriel Lowy
TechTonics

Share this

This post is an excerpt of the new Tech-Tonics Advisors report: The PADS Framework for Application Performance and User Experience.

The "point of delivery", which is where users access composite apps, is the only perspective from which user experience should be evaluated. Thus, the most relevant metric for IT teams is not about infrastructure utilization. Instead, it is at what point of utilization the user experience begins to degrade. This means transaction completion. If transactions do not complete, user experience suffers as does business performance.

The PADS (Performance Analytics and Decision Support) Framework is composed of holistically connected next-generation Application Performance Management (APM) and operational intelligence platforms.

Performance Analytics

The performance analytics (PA) platform incorporates network, infrastructure, application and transaction monitoring, which feeds an advanced correlation and analytics engine. A single unified view of all components that support a service facilitates the management of service delivery and problem resolution.

More advanced platforms already perform real-time monitoring. Leading players have evolved their platforms to perform real-time deep-dive packet inspection that can be correlated for root cause diagnostics and trouble-shooting. They can trace transactions from the user’s perspective, creating metadata tags that add business context for when application performance issues arise.

Correlation and analytics engines must include key performance indicators (KPIs) as guideposts to align with key business processes.  A holistic approach lets the level of granularity be adjusted to the person viewing the application performance. For example, a business user’s requirements will differ from an operations manager, which in turn will be different from a network engineer.

Next-generation solutions are all capable of collecting vast amounts of transaction data against which they can run analytics for a variety of use cases, most of which are user experience related. The interactive and measurable nature of Web activity also enables businesses to determine how users – both internal and external – experience their applications, including the time it takes for Web pages to load and transactions to be processed.

Expect these platforms to evolve further toward operational intelligence by expanding the types of data sources they can collect and correlate. They will also drive deeper into analytics, including predictive capabilities, to allow IT – and eventually, line of business users – to monitor user experience more granularly.

Operational Intelligence

Within the PADS Framework, users can then feed this information about the application delivery chain and user experience upstream into an operational intelligence (OI) platform. The OI platform can then integrate this data with other types of information to improve decision making throughout the organization.

An OI platform collects, indexes, correlates and analyzes log and other forms of machine data at massive scale to help IT and business users gain real-time insights from disparate data types and sources.

Complicating the issue of just doing big data analytics on the systems a company has on premises is the fact that more and more applications are running out on the cloud. And growing numbers of users are accessing both internal and cloud-based apps remotely from mobile devices. The platform makes heavy use of timestamps and keywords and then applies special algorithms to correlate data into events.

Big data sets are beyond the scope of conventional relational database management systems utilizing SQL query language. As such, an OI platform complements traditional business intelligence and data warehousing through its ability to incorporate newer forms of unstructured data.

To achieve scale, the platform leverages massively parallel processing and big data analytics capabilities. With distributed search databases, role-based access control, and the ability to rifle through terabytes of log data daily, the OI platform can accommodate the data generation systems of large enterprises.

Analytics Unifies the Platforms

These holistically linked platforms correlate billions of transaction metrics and identify patterns that provide early warning signs of impending trouble. Analytics can help reduce time being spent on correlating information collected by different tools that monitor infrastructure, network, applications and transactions, including real user and synthetic transactions. This should also include tools that are being deployed independent of IT.

The performance analytics platform includes real-time analysis of application and service performance across both physical and virtual environments by dynamically tracking, capturing and analyzing complex service delivery transactions across multi-domain IP networks.

Deep-dive analytics allows IT organizations to be more proactive by pinpointing the root cause of problems before users call the help desk and before a visitor departs a website. Correlation and analytics engines must include key performance indicators (KPIs) as guideposts to align with critical business processes.

To provide insights that business users can understand and value, IT must establish an effective link between performance management and analytics. The level of granularity can be adjusted to the person viewing the performance of the service or the network. For example, a line of business user’s requirements will differ from an operations manager, which in turn will be different from a network engineer.

The key to success for the PADS Framework is providing correlation and analytics engines that feed into customizable dashboards. The ability to quickly visualize and interpret a problem or opportunity that results in actionable decisions is how to derive the most value from the platforms that comprise the Framework. In addition to assuring application availability and user experience, the PADS Framework provides pre-emptive warnings of systems failure.

For today’s loosely-couple application architectures, the PADS Framework provides enterprises with a strategic approach to ensuring application performance and user experience. Studies have shown that across different industry sectors, companies taking a unified approach outperform their peer groups in achieving ROI and risk management objectives.

Gabriel Lowy is the founder of TechTonics Advisors, a research-first investor relations consultancy that helps technology companies maximize value for all stakeholders by bridging vision, strategy, product portfolio and markets with analysts and investors
Share this

The Latest

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...