Legacy Application Performance Management (APM) vs Modern Observability - Part 1
May 03, 2022

Colin Fallwell
Sumo Logic

Share this

In this 3 part series, I will explore, contrast, and discuss the differences as well as the history of APM and the meteoric rise of Modern Observability, why these two are related but simultaneously are vastly different in outcome. Indeed, Modern Observability is disrupting the world, and organizations doing it right are realizing massive gains in innovation, reaping the benefits of higher performance and optimization across numerous dimensions including:

■ IT governance

■ Revenue growth

■ Vendor cost reduction

■ Tool Consolidation

■ DevOps toil and churn

■ Application performance and customer experiences

■ Reliability and Security

■ Employee satisfaction

■ Data Science and Business Analytics

■ AI-controlled automation (AIOps)

Modern Observability is becoming the foundation upon which organizations are able to reduce the toil and churn associated with capital spending across initiatives such as Cloud Migrations, App Modernization, Digital Transformation, and AIOps by leveraging new methodologies such as Observability-Driven-Development (ODD).

Traditional APM is a mature, vendor-led industry, and was built at a time when the world was developing monolithic, 3-tier architectures and when software was typically released once or twice a year. APM is a closed ecosystem, with patented protocols and agents which are deployed to run on every node, injected into runtimes with startup parameters, and have little to no impact on how software is designed or developed.

This is a good thing, right?

In contrast to Modern Observability, and for organizations moving to the cloud, APM is loaded with hidden costs and unintended consequences. From a process perspective, APM does not live within the developer ecosystem and has historically been funded by Ops teams or DevOps/SRE groups that have largely been out of the immediate workstream of software development. This nuance means developers have no real ownership interest in APM and don't feel compelled in taking responsibility for declaring what it means to make something "observable." What enterprises desire most are reliable pipelines of telemetry that provide accurate data inferring the internal state of systems including usage and behavioral insights of end-users, code execution, infrastructure health, and overall performance. Most developers have been poor adopters of APM.

A major characteristic of Modern Observability is in how it becomes designed into the fabric of the applications, services, and infrastructure by DevOps teams, implemented through models such as GitOps, which in turn provides numerous benefits to organizations that legacy APM really does not align to. It is within this point of view or context that I base my opinions on throughout this series. Many organizations still relying on APM vendors will struggle to increase the intrinsic value of data within the organization. It's my firm argument that the most important attribute of Modern Observability lies in its "programmable" nature, whereby the acquisition of telemetry becomes woven into the fabric of developing software and the services offered by anyone competing in this global software-driven economy.

There are many other dimensions of contrast, but I personally believe this to be the most important with respect to organizations embracing digital transformation, or for those that just want to improve maturity, growth, and innovation, or anyone wishing to own their own destiny when it comes to data intelligence.

In the next installment (Part 2) of this series, we dive into the history of APM and how it became a 6 Billion USD market and explore some of the challenges that come with APM.

Colin Fallwell is Field CTO of Sumo Logic
Share this

The Latest

December 18, 2024

Industry experts offer predictions on how NetOps, Network Performance Management, Network Observability and related technologies will evolve and impact business in 2025 ...

December 17, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 6 covers cloud, the edge and IT outages ...

December 16, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 5 covers user experience, Digital Experience Management (DEM) and the hybrid workforce ...

December 12, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 4 covers logs and Observability data ...

December 11, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 3 covers OpenTelemetry, DevOps and more ...

December 10, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 2 covers AI's impact on Observability, including AI Observability, AI-Powered Observability and AIOps ...

December 09, 2024

The Holiday Season means it is time for APMdigest's annual list of predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how Observability, APM, AIOps and related technologies will evolve and impact business in 2025 ...

December 05, 2024
Generative AI represents more than just a technological advancement; it's a transformative shift in how businesses operate. Companies are beginning to tap into its ability to enhance processes, innovate products and improve customer experiences. According to a new IDC InfoBrief sponsored by Endava, 60% of CEOs globally highlight deploying AI, including generative AI, as their top modernization priority to support digital business ambitions over the next two years ...
December 04, 2024

Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences ... As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings ...

December 03, 2024

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...