Arize Phoenix rolled out several capabilities in its latest release.
Phoenix's new support for LLM traces and spans means that AI engineers and developers can get visibility at a span-level and see exactly where an app breaks, with tools to analyze each step rather than just the end-result.
This capability is particularly useful for early app developers because it doesn't require them to send data to a SaaS platform to perform LLM evaluation and troubleshooting -- instead, the open-source solution provides a mechanism for pre-deployment LLM observability directly from their local machine. Phoenix supports all common spans and has a native integration into LlamaIndex and LangChain.
The new Phoenix LLM evals library is also designed for fast and accurate LLM-assisted evaluations, ultimately making the use of the evaluation LLM easy to implement. Applying data science rigor to the testing of model and template combinations, Phoenix offers proven LLM evals for common use cases and needs around retrieval (RAG) relevance, reducing hallucinations, question-and-answer on retrieved data, toxicity, code generation, summarization, and classification. The Phoenix LLM evals library is optimized to run evaluations quickly with support for the notebook, Python pipeline, and app frameworks such as LangChain and LlamaIndex.
"Large language models are poised to transform industries and society, but when it comes to robust performance going from toy to production remains a challenge," said Jason Lopatecki, CEO and Co-Founder of Arize AI. "These industry-first updates from Phoenix promise to provide better LLM evals and deeper troubleshooting to make complex LLM-powered systems ready and reliable in the real world."
The Latest
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...