Skip to main content

AI Trends Under the Radar for 2025: 5 Ways AI Will Improve Customer Experience

Vova Gerneshii
GMS

Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences. Today's more sophisticated end-users expect more from brands including seamless services with limited downtime, more emotionally sensitive customer support and personalized, contextualized communications that address their specific needs.

As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings.

Test Customer Experience Strategies with Digital Twin AI

Digital twin AI will create virtual "copies" of customers and simulate their journey with a brand. Businesses can test different strategies on these digital twins, such as new features or engagement approaches, before rolling them out to real customers, thus allowing them to refine the experience safely without impacting customer trust. This is important because many brands have launched costly AI-driven CX approaches that have failed miserably because they did not meet customer expectations or they felt disjointed, disruptive, or unfamiliar. Advance testing gives brands the ability to uncover what works versus what does not work well in advance of new CX rollouts.

To effectively drive Digital Twin AI testing, IT teams should work with detailed behavioral models and predictive analytics to mimic real customer actions accurately. Large-scale data infrastructure will be necessary, alongside continuous feedback systems, to keep refining these digital twins based on real-world data.

Leverage Emotionally Intelligent AI To Provide High-Touch Customer Support

Emotionally intelligent AI goes beyond recognizing basic emotions, like positive or negative sentiment, to pick up on subtle feelings like frustration or confusion with ethics. It can then adjust its responses to de-escalate tense interactions or address concerns more sensitively, making the experience feel more human. This is important because brands that deliver exceptional service boast higher rates of customer loyalty and satisfaction. In fact, 83% of customers feel more loyal to brands that respond and resolve their complaints in a more efficient and personalized manner, according to a new Khoros study.

This year, IT teams will build emotionally intelligent AI by investing in complex natural language processing (NLP) models that detect emotion, tone, and cultural nuances. They will also process data from multiple sources, like text and voice, in real time to adapt language and responses during live interactions.

Improve Situational Awareness in Conversational AI

Situational awareness will enable conversational AI to adapt based on the specific context of an interaction, like a customer's location, urgency, or history with the brand. This way, AI can give responses that make sense in that particular moment and address the customer's current needs. Today's consumers expect very personalized, proactive and high-touch engagement with brands as well as contextualized responses that are appropriate and relevant to the situation at hand. Companies that fail to deliver this will lose market share, especially with younger digital natives that have higher expectations for brand engagement.

IT teams can achieve this by re-jiggering their AI systems to combine real-time context data, such as location and urgency, with conversational context. Investing in advanced NLP with event-driven architecture will ensure responses are not only context-sensitive but also processed without delay.

Deploy Real-Time Fraud-Behavior Simulation to Boost Security

Today's consumers are increasingly worried about hackers stealing their information and assets particularly when engaging with brands online. Therefore, companies must invest more in AI-driven security to better protect them from hackers with more sophisticated fraud tactics — or else they risk losing them for good.

In the coming year, IT teams will use AI to simulate fraud-like actions in real time to find weaknesses in messaging systems. This "friendly hacking" approach helps identify gaps that conventional anomaly detection might miss, allowing companies to strengthen security against evolving threats.

To achieve this, IT teams will deploy generative adversarial networks (GANs) to create fraud-like behavior patterns and add them to real-time monitoring systems. They will integrate these dynamic simulations with their security platforms, automatically adjusting defenses as new behaviors are detected.

Use "Backstage AI" to Deliver Smoother, Reliable Services

In 2025, tech leaders will rely on Backstage AI, which operates behind the scenes to keep services running smoothly without the customer noticing any interruptions. It helps manage system traffic, balance loads, and optimize resources to prevent service slowdowns or downtime, providing a consistent experience for users. This comes at a time when users insist on minimal or zero downtime. Too frequent disruptions will cause them to abandon vendors that fail to provide highly reliable services, especially in this era of hybrid and remote work.

IT teams can deliver Backstage AI by leveraging real-time monitoring and traffic management, with low-latency data transfer across the system. Distributed machine learning, auto-scaling algorithms, and intelligent load balancing are crucial to make this "invisible" AI operate seamlessly.

IT teams are in a strong position to help their organizations invest in proactive AI CX strategies that deliver both immediate and long-lasting positive outcomes. We believe 2025 will be about the pursuit of short-term, bottom-line gains while shoring up customer loyalty and digital-first business buyers. Looking ahead, savvy IT leaders will invest more in core AI foundations by buttressing infrastructure and upskilling employees. As they operationalize the AI-driven CX lessons learned from 2024's experimentation, they can deliver key short-term wins and eventually succeed with GenAI, Conversational AI and other emerging technologies over the long haul.

Vova Gerneshii is Growth Product Director at GMS, ext.

The Latest

As artificial intelligence (AI) adoption gains momentum, network readiness is emerging as a critical success factor. AI workloads generate unpredictable bursts of traffic, demanding high-speed connectivity that is low latency and lossless. AI adoption will require upgrades and optimizations in data center networks and wide-area networks (WANs). This is prompting enterprise IT teams to rethink, re-architect, and upgrade their data center and WANs to support AI-driven operations ...

Artificial intelligence (AI) is core to observability practices, with some 41% of respondents reporting AI adoption as a core driver of observability, according to the State of Observability for Financial Services and Insurance report from New Relic ...

Application performance monitoring (APM) is a game of catching up — building dashboards, setting thresholds, tuning alerts, and manually correlating metrics to root causes. In the early days, this straightforward model worked as applications were simpler, stacks more predictable, and telemetry was manageable. Today, the landscape has shifted, and more assertive tools are needed ...

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...

AI Trends Under the Radar for 2025: 5 Ways AI Will Improve Customer Experience

Vova Gerneshii
GMS

Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences. Today's more sophisticated end-users expect more from brands including seamless services with limited downtime, more emotionally sensitive customer support and personalized, contextualized communications that address their specific needs.

As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings.

Test Customer Experience Strategies with Digital Twin AI

Digital twin AI will create virtual "copies" of customers and simulate their journey with a brand. Businesses can test different strategies on these digital twins, such as new features or engagement approaches, before rolling them out to real customers, thus allowing them to refine the experience safely without impacting customer trust. This is important because many brands have launched costly AI-driven CX approaches that have failed miserably because they did not meet customer expectations or they felt disjointed, disruptive, or unfamiliar. Advance testing gives brands the ability to uncover what works versus what does not work well in advance of new CX rollouts.

To effectively drive Digital Twin AI testing, IT teams should work with detailed behavioral models and predictive analytics to mimic real customer actions accurately. Large-scale data infrastructure will be necessary, alongside continuous feedback systems, to keep refining these digital twins based on real-world data.

Leverage Emotionally Intelligent AI To Provide High-Touch Customer Support

Emotionally intelligent AI goes beyond recognizing basic emotions, like positive or negative sentiment, to pick up on subtle feelings like frustration or confusion with ethics. It can then adjust its responses to de-escalate tense interactions or address concerns more sensitively, making the experience feel more human. This is important because brands that deliver exceptional service boast higher rates of customer loyalty and satisfaction. In fact, 83% of customers feel more loyal to brands that respond and resolve their complaints in a more efficient and personalized manner, according to a new Khoros study.

This year, IT teams will build emotionally intelligent AI by investing in complex natural language processing (NLP) models that detect emotion, tone, and cultural nuances. They will also process data from multiple sources, like text and voice, in real time to adapt language and responses during live interactions.

Improve Situational Awareness in Conversational AI

Situational awareness will enable conversational AI to adapt based on the specific context of an interaction, like a customer's location, urgency, or history with the brand. This way, AI can give responses that make sense in that particular moment and address the customer's current needs. Today's consumers expect very personalized, proactive and high-touch engagement with brands as well as contextualized responses that are appropriate and relevant to the situation at hand. Companies that fail to deliver this will lose market share, especially with younger digital natives that have higher expectations for brand engagement.

IT teams can achieve this by re-jiggering their AI systems to combine real-time context data, such as location and urgency, with conversational context. Investing in advanced NLP with event-driven architecture will ensure responses are not only context-sensitive but also processed without delay.

Deploy Real-Time Fraud-Behavior Simulation to Boost Security

Today's consumers are increasingly worried about hackers stealing their information and assets particularly when engaging with brands online. Therefore, companies must invest more in AI-driven security to better protect them from hackers with more sophisticated fraud tactics — or else they risk losing them for good.

In the coming year, IT teams will use AI to simulate fraud-like actions in real time to find weaknesses in messaging systems. This "friendly hacking" approach helps identify gaps that conventional anomaly detection might miss, allowing companies to strengthen security against evolving threats.

To achieve this, IT teams will deploy generative adversarial networks (GANs) to create fraud-like behavior patterns and add them to real-time monitoring systems. They will integrate these dynamic simulations with their security platforms, automatically adjusting defenses as new behaviors are detected.

Use "Backstage AI" to Deliver Smoother, Reliable Services

In 2025, tech leaders will rely on Backstage AI, which operates behind the scenes to keep services running smoothly without the customer noticing any interruptions. It helps manage system traffic, balance loads, and optimize resources to prevent service slowdowns or downtime, providing a consistent experience for users. This comes at a time when users insist on minimal or zero downtime. Too frequent disruptions will cause them to abandon vendors that fail to provide highly reliable services, especially in this era of hybrid and remote work.

IT teams can deliver Backstage AI by leveraging real-time monitoring and traffic management, with low-latency data transfer across the system. Distributed machine learning, auto-scaling algorithms, and intelligent load balancing are crucial to make this "invisible" AI operate seamlessly.

IT teams are in a strong position to help their organizations invest in proactive AI CX strategies that deliver both immediate and long-lasting positive outcomes. We believe 2025 will be about the pursuit of short-term, bottom-line gains while shoring up customer loyalty and digital-first business buyers. Looking ahead, savvy IT leaders will invest more in core AI foundations by buttressing infrastructure and upskilling employees. As they operationalize the AI-driven CX lessons learned from 2024's experimentation, they can deliver key short-term wins and eventually succeed with GenAI, Conversational AI and other emerging technologies over the long haul.

Vova Gerneshii is Growth Product Director at GMS, ext.

The Latest

As artificial intelligence (AI) adoption gains momentum, network readiness is emerging as a critical success factor. AI workloads generate unpredictable bursts of traffic, demanding high-speed connectivity that is low latency and lossless. AI adoption will require upgrades and optimizations in data center networks and wide-area networks (WANs). This is prompting enterprise IT teams to rethink, re-architect, and upgrade their data center and WANs to support AI-driven operations ...

Artificial intelligence (AI) is core to observability practices, with some 41% of respondents reporting AI adoption as a core driver of observability, according to the State of Observability for Financial Services and Insurance report from New Relic ...

Application performance monitoring (APM) is a game of catching up — building dashboards, setting thresholds, tuning alerts, and manually correlating metrics to root causes. In the early days, this straightforward model worked as applications were simpler, stacks more predictable, and telemetry was manageable. Today, the landscape has shifted, and more assertive tools are needed ...

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...