Always regarded as a non-critical part of day-to-day operations in the past, Big Data and its delayed analysis was relegated to batch processing tools and monthly meetings. Today, as the IT industry has snowballed into a fast moving avalanche of Cloud, virtualization, outsourcing and distributed computing, the science of extracting meaningful intelligent metrics from Big Data has become an important and real-time component of IT Operations.
Why Big Data in Cloud Performance Tools?
No longer do IT management systems work in vertical or horizontal isolation as just a few years ago. The inter-dependence between IT Services, applications, servers, cloud services and network infrastructure has a direct and measurable impact on Business Services.
The amount of data generated by these components is huge and the rate at which this data is generated is so fast that traditional tools cannot keep up with any kind of real time correlation. The combined volume of data generated by this hybrid infrastructure can be huge, but if it is correlated properly, it can give misson critical insight into:
- the response times and behavior of an IT service or application
- the cause of performance degradation of an IT service
- trend analysis and proactive capacity planning
- see if SLAs are being met for business services
This data has to be analyzed and processed in real-time in order to provide proactive responses and alerting for service degradation. The data that is being collected can be structured or unstructured, coming from a variety of systems which depend on each other to offer optimal performance, and has little to no obvious linkage or keys to one another (i.e. the data coming from an application is completely independent of the data coming from the network that it is running on).
Some examples of data sources that need to be correlated are application logs, netflow, JMX, XML, SNMP, WMI, security logs, packet analysis, business service response times, weather, news, etc.
Enterprises are moving to hybrid cloud environments at an alarming rate and all customer surveys indicate that the complexity of these platforms are their biggest concern. Enterprises must adopt monitoring systems that are flexible and can handle Big Data efficiently so that they can offer real-time responses to alarms and get meaningful business impact analysis from all of the different data sources.
Contextual analytics and presentation of data from multiple sources is invaluable to IT Operations in troubleshooting poor application performance and user satisfaction.
As a simple example, a user response time application could send an alert that the response time of an application is too high. Application Performance Monitoring (APM) data could indicate that a database is responding slowly to queries because the buffers are starved and the number of transactions is abnormally high. Integrating with network netflow or packet data would allow immediate drill down to isolate which client IP address is the source of the high number of queries.
How to Handle Big Data for Cloud Performance
Traditional monitoring or BI platforms are not designed to handle the volume and variety of data from this hybrid IT infrastructure. The management platforms need to be designed to correlate Big Data from the IT components in real-time and provide feedback to the operations team for proactive responses. As these monitoring systems evolve, their Big Data correlation components will become richer and more analytical and will position these enterprises for the IT environments of the future.
New generation enterprise monitoring solutions that are scalable, have predictive analytics, multi-tenant and a granular security model are now available from a small number of vendors. Single use systems that are designed for just network data or just application data are trapped within the same boundaries that makes Big Data meaningless - by its very nature, Big Data systems need to be able to handle a very wide variety of data sources to provide greater uptime from faster troubleshooting and lower OpEx from correlated analysis.
Vikas Aggarwal is CEO of Zyrion.
The Latest
Industry experts offer predictions on how NetOps, Network Performance Management, Network Observability and related technologies will evolve and impact business in 2025 ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 6 covers cloud, the edge and IT outages ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 5 covers user experience, Digital Experience Management (DEM) and the hybrid workforce ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 4 covers logs and Observability data ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 3 covers OpenTelemetry, DevOps and more ...
In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 2 covers AI's impact on Observability, including AI Observability, AI-Powered Observability and AIOps ...
The Holiday Season means it is time for APMdigest's annual list of predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how Observability, APM, AIOps and related technologies will evolve and impact business in 2025 ...
Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences ... As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings ...
We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...