What Is the Deal with AIOps? - Part 1
July 26, 2021

Akhilesh Tripathi
Digitate

Share this

We are in an era where the rate of technology adoption across nearly all industries has increased significantly in recent years. Growing enterprise complexity has increased demand for new models for business transformation in the form of deployment, scale, and change acceleration. This renewed acceleration of technology adoption is redefining enterprise IT Operations (ITOps).

The increase of instrumentation, monitoring and integrations has increased the amount of data generated by organizations — which created two challenges:

1. making sense of it has become difficult with standard methods.

2. It has also increased noise in the ecosystem, which is leading to high false alerts.

These have led to the need and eventual creation of a new market category within the space of enterprise IT called "AIOps" — the application of Artificial Intelligence (AI) for IT operations.

AIOps is rapidly becoming a de-facto option for enterprises' IT strategies, with nearly immeasurable benefits to be provided. However, AIOps is still a relatively new discipline and misconceptions surrounding the technology's capabilities and uses have caused bottlenecks and roadblocks in its widespread adoption.

So, what should organizations expect from AIOps?

How can organizations that want to digitally transform their IT pursue AIOps for maximum benefit?

What is AIOps? Why AIOps?

First, let's see exactly what AIOps is and why it's critical in today's enterprise IT environment. Recent digital transformation efforts across industries have redefined enterprise IT Operations and led to the emergence of AIOps.

AIOps refers to solutions that leverage AI and Machine Learning (ML) to acquire enterprise IT data, analyze it and take required actions for autonomous IT Operations. It helps transform enterprise IT operations from being slow and reactive to agile and proactive, thus addressing many key IT operational and business challenges.

Automating IT operations enables easy deployment of modern and agile IT systems that support enterprise-wide digital transformation efforts, such as cloud migration and automation enablement. Traditional IT management solutions that involve manual efforts for tedious and repeatable processes cannot keep up with the pace of rapid enterprise IT changes and leaves IT teams facing challenges surrounding infrastructure complexities, long delays in isolating and resolving IT faults, and inconsistent and variable quality of operations. Deploying AIOps helps to overcome these challenges by acting as an intelligent way to assess enterprise system behavior and detect anomalies, prescribe solutions and proactively take action to resolve IT incidents and prevent disruptions in IT operations.

With the increase in scale of enterprise operations, complexity and accelerating change in technology footprints, i.e., the landscape of digital systems across an organization, AIOps is not just an option, but a necessity. The volume and complexity of data generated by, and coming into, any given organization can be quite voluminous and overwhelming. Handling this with traditional IT systems can be quite inadequate. Making sense from this huge amount of information calls for advanced AI/ML based analytics/intelligence layer.

Also, as data might come from correlated sources it can lead to duplicated work and siloed views if handled through a traditional and siloed IT operations approach. This is because it lacks the ability to provide a correlated enterprise-wide view of digital systems and how they interact across business domains. So, it can never match the scale of this data and also cannot reap the full benefits of this data/information.

Simply making sense of the data/information won't solve the problem, it is also necessary to act on the inference drawn from this data, and this is hugely important. Intelligent automation becomes a necessity here. Hence, the need for a highly intelligent, hyper automated and scalable solution that can combine big data, observability, enterprise context, AI/ML based analytics and intelligent automation to help gain full-stack visibility across hybrid environments, understand normal behavior, understand root causes of issues, fix problems, predict failures and their direct impact on IT and business. Thus, providing resilient and efficient IT operations cross organizations — and the answer lies in "AIOps."

Go to What Is the Deal with AIOps? - Part 2, outlining what to keep in mind when considering DevOps, and what results can be expected from AIOps.

Akhilesh Tripathi is CEO at Digitate
Share this

The Latest

December 18, 2024

Industry experts offer predictions on how NetOps, Network Performance Management, Network Observability and related technologies will evolve and impact business in 2025 ...

December 17, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 6 covers cloud, the edge and IT outages ...

December 16, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 5 covers user experience, Digital Experience Management (DEM) and the hybrid workforce ...

December 12, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 4 covers logs and Observability data ...

December 11, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 3 covers OpenTelemetry, DevOps and more ...

December 10, 2024

In APMdigest's 2025 Predictions Series, industry experts offer predictions on how Observability and related technologies will evolve and impact business in 2025. Part 2 covers AI's impact on Observability, including AI Observability, AI-Powered Observability and AIOps ...

December 09, 2024

The Holiday Season means it is time for APMdigest's annual list of predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how Observability, APM, AIOps and related technologies will evolve and impact business in 2025 ...

December 05, 2024
Generative AI represents more than just a technological advancement; it's a transformative shift in how businesses operate. Companies are beginning to tap into its ability to enhance processes, innovate products and improve customer experiences. According to a new IDC InfoBrief sponsored by Endava, 60% of CEOs globally highlight deploying AI, including generative AI, as their top modernization priority to support digital business ambitions over the next two years ...
December 04, 2024

Technology leaders will invest in AI-driven customer experience (CX) strategies in the year ahead as they build more dynamic, relevant and meaningful connections with their target audiences ... As AI shifts the CX paradigm from reactive to proactive, tech leaders and their teams will embrace these five AI-driven strategies that will improve customer support and cybersecurity while providing smoother, more reliable service offerings ...

December 03, 2024

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...