definity Emerges from Stealth
August 14, 2024
Share this

definity announced the general availability of its pioneering Data Application Observability & Remediation platform for Spark data analytics environments, marking a significant advancement in data operations.

The company is also announcing it has raised $4.5 million in a Seed funding round led by StageOne Ventures, with participation from Hyde Park Venture Partners and additional strategic angel investors.

definity offers a data application native solution, providing in-motion and contextualized insights into data pipeline execution, data quality, and data infrastructure performance. Using an agent-based architecture, definity runs inline with every data transformation on the platform, establishing ubiquitous observability with zero code-changes—in on-prem, hybrid, or cloud environments.

Designed specifically for Spark-heavy environments, definity helps data engineers to proactively prevent data incidents, find their root-cause, and fix them—faster than ever before. definity also enables engineers to automatically monitor data applications' performance, identify concrete optimization and saving opportunities across the platform, and easily optimize performance. This empowers enterprises to minimize downtime, increase engineering velocity, and reduce infrastructure cost.

The company was founded by CEO Roy Daniel, former product executive at FIS; CTO Ohad Raviv, former big-data tech lead at Paypal and Apache Spark contributor; and VP R&D Tom Bar-Yacov, former data engineering manager at Paypal. After experiencing the challenges of managing mission-critical data applications at high-scale firsthand, they built the solution they sought for the enterprise segment.

"Enterprise data engineers demand a new standard of observability that doesn't exist today" said Roy Daniel, co-founder & CEO, definity. "Traditional data monitoring focuses on the symptoms, assessing data quality at-rest in the data warehouse, which is too out-of-context, reactive, and simply not applicable for Spark. definity fills this void by taking a completely new approach focused on the data application itself, observing in-motion how data is processed and how the infrastructure operates, making Spark applications human-readable."

"Today's enterprise data leaders face a serious pressure to ensure the reliability of the data powering the business, while increasing scale, cutting costs, and adopting AI technologies", said Nate Meir, General Partner, StageOne Ventures. "But without x-ray vision into every data application, data teams are left blind and reactionary. definity is addressing this need head-on with a paradigm shifting solution that is both powerful and seamless for data engineering and data platform teams."

Share this

The Latest

December 03, 2024

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...

December 02, 2024

From the accelerating adoption of artificial intelligence (AI) and generative AI (GenAI) to the ongoing challenges of cost optimization and security, these IT leaders are navigating a complex and rapidly evolving landscape. Here's what you should know about the top priorities shaping the year ahead ...

November 26, 2024

In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...

November 25, 2024

In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...