GigaSpaces announced the availability of GigaSpaces Version 15.0, including the InsightEdge Platform and XAP, to operationalize and optimize machine learning with the required speed, scale, accuracy and management tools.
GigaSpaces Version 15.0 powers machine learning operations (MLOps) initiatives, helping enterprises maximize the business value derived from big data.
GigaSpaces Version 15.0 simplifies integrating AI workloads with the organization's core infrastructure, accelerating machine learning deployment and enabling enterprises to more readily experience the business benefits of machine learning models.
GigaSpaces Version 15.0 introduces a new enterprise-grade monitoring and administration tool, Ops Manager, that provides visibility into the components of systems running models including logs, inputs, outputs and exceptions, using different performance visualization techniques. The Ops Manager enables continuous monitoring of machine learning pipelines, starting at the cluster level and drilling through to individual services so users can maintain accurate data models and ensure that problems are resolved before they affect overall performance.
The new AnalyticsXtreme Batch Indexing included in GigaSpaces InsightEdge Version 15.0 optimizes and automates data access and storage with the added ability to move data between the more frequent (cold data) access and infrequent (archive data) access tiers on data lakes and data warehouses. The performance of ML models is enhanced since frequently accessed cold data can be retrieved 80X faster directly from data lakes and processing costs are reduced as data access patterns change.
GigaSpaces Version 15.0 also provides a native smart space client in Kubernetes that supports remote CRUD operations, task execution, and event-driven analytics providing high throughput and fast serialization, as well as automatic load balancing. Writing and updating of data without a predefined schema allows easy changes to the data model, while ensuring compatibility with JDBC and BI tools so that code can be integrated more reliably and faster with lower administrative overhead.
"Machine learning is becoming an essential component of mission critical applications to optimize operations and deliver superior real time customer experiences," said Yoav Einav, VP Product at GigaSpaces. "GigaSpaces Version 15.0 provides enterprises with the machine learning model management capabilities, speed and scale that they need to accelerate their machine learning and artificial intelligence journey."
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...