StreamSets released StreamSets Transformer, a simple-to-use, drag-and-drop UI tool to create native Apache Spark applications.
Designed for a wide range of users — even those without specialized skills — StreamSets Transformer enables the creation of pipelines for performing ETL, stream processing and machine-learning operations. Now, data engineers, scientists, architects and operators gain deep visibility into the execution of Apache Spark while broadening usage across the business.
Apache Spark delivers on the promise of advanced data processing and machine learning at scale. But there are drawbacks. Developing and operating applications on Apache Spark is complex and requires hand-coding. It is typically restricted to developers and companies with mature data engineering and data science practices. In addition, users often have very limited visibility into how their Apache Spark jobs are running. StreamSets Transformer solves these issues. Its easy-to-use, logical user interface and rich tools for designing data transformations eliminate the complexity and need for specialized skills. Pipelines instrumented with StreamSets Transformer provide unparalleled visibility into every Spark execution. Equally important, developers now have a single tool to build both batch and streaming pipelines.
The key features of StreamSets Transformer include:
- Continuous monitoring — Unparalleled visibility into Apache Spark application execution
- Continuous data — Runs in both batch and streaming modes
- Progressive error handling — Finds where and why errors occur without the need for Apache Spark skills to decipher complex log files
- Execute on Apache Spark anywhere — Works in the cloud, Kubernetes or on premises
- Highly extensible — Higher order transformation primitives for the ETL developer, SparkSQL for the analyst, PySpark for the data scientist, and custom Java/Scala processors for the Apache Spark developer
- Sets-based processing — For ETL, machine learning and complex event processing
“With StreamSets Transformer, Apache Spark is finally available to a wide range of users, enabling visibility, monitoring and reporting for mission-critical workloads,” said Arvind Prabhakar, CTO of StreamSets. “In essence, StreamSets Transformer brings the power of Apache Spark to businesses, while eliminating its complexity and guesswork.”
“With StreamSets Transformer and Databricks integrated together, even more users can easily access the powerful capabilities of Delta Lake and our optimized Apache Spark for data science and analytics,” said Michael Hoff, SVP of Business Development and Partners at Databricks. “Especially as organizations migrate from legacy on premises platforms, our partnership will help them efficiently make that transition to manage their data and machine learning workloads in the cloud.”
StreamSets Transformer is available immediately.
The Latest
In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...