Why the Time has Arrived for Mainframe AIOps
June 17, 2021

April Hickel
BMC

Share this

More and more mainframe decision makers are becoming aware that the traditional way of handling mainframe operations will soon fall by the wayside. The ever-growing demand for newer, faster digital services has placed increased pressure on data centers to keep up as new applications come online, the volume of data handled continually increases, and workloads become increasingly unpredictable.

In a recent Forrester Consulting AIOps survey, commissioned by BMC, the majority of respondents cited that they spend too much time reacting to incidents and not enough time finding ways to prevent them, with 70% stating that incidents have an impact before they are even detected, and 60% saying that it takes too long for their organizations to detect incidents. With the mainframe a central part of application infrastructure, performance issues can affect the entire application, making early detection and resolution of these issues (not to mention their avoidance altogether), vitally important.

Organizations must treat the mainframe as a connected platform and take a new, more proactive approach to operations management. Fortunately, the evolution of data collection and processing technology and the emergence of newly created machine learning techniques now afford us a path to transform mainframe operations with AIOps, becoming a more autonomous digital enterprise.

In today's fast-paced digital economy, operations teams don't have time to spend in prolonged investigative phases each time an issue arises. Instead of waiting for issues to arise, then devoting available resources to resolve them, the automated monitoring offered by modern tools uses artificial intelligence (AI) and machine learning (ML) to examine and evaluate the interplay of multiple pieces of intersecting information, allowing teams to detect potential problems and pinpoint their cause much earlier.

This automation becomes even more important as shifting workforce demographics result in the loss of institutional knowledge. The Forrester AIOps survey showed that 81% of respondents still rely in part on manual processes to respond to slowdowns, with 75% saying their organization employs some manual labor when diagnosing multisystem incidents. In today's fast-paced digital economy, this creates a perfect storm of higher customer expectations, faster implementation of an increasing number of digital services, and a more tightly connected mainframe supported by a less-experienced workforce.

Automated monitoring helps ease these pressures by codifying knowledge and identifying potential problems and possible solutions, resulting in proactive monitoring, faster response, and decreased reliance on specialized skillsets.

The good news is that AIOps on the mainframe is no longer limited to those organizations with the resources to design and implement customized large-scale data collection and data science infrastructures. The technology for being able to consume and process the large volume of data captured on the mainframe, and the proven techniques to apply machine learning algorithms to that data, have matured to a degree of accuracy and scale where they are now implementable in a wide range of customer environments. Vendors have even evolved to the point where they are now shipping out-of-the-box models that can be implemented immediately to accurately detect existing and potential problems.

So, where to begin?

Many organizations have found success in implementing mainframe AIOps by starting with a narrow scope. Build AIOps onto your existing systems management platform rather than replacing it wholesale. Make sure your existing platform is current and that you choose a monitoring tool that provides a modern user experience and allows you to quickly and easily integrate AIOps use cases.

Starting with a focused use case, such as detection, and inputting historical data can help demystify the process by showing how known issues are detected and help prove the value of moving to an AIOps-based approach. Once you have successfully implemented that first use case, move to a second, such as probable cause analysis, again taking advantage of historical data to learn and test the new technology. This gradual adoption not only ensures that your organization is employing AIOps tools to their full potential, it allows employees to learn the tools and adapt processes without the upheaval of a sudden, major change.

The detect and respond model of operations management has served the mainframe well for decades, but the confluence of multiple factors has made it clear that a change is in order. With an accelerating digital economy, the increased need to include the mainframe in your organization's digital strategy, shifting workforce demographics, and availability of technologies that enable automation everywhere, the time is right for your organization to adopt AIOps on the mainframe.

April Hickel is VP, Intelligent Z Optimization and Transformation, at BMC
Share this

The Latest

November 26, 2024

In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...

November 25, 2024

In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...