Streamlining Anomaly Detection and Remediation with Edge Observability
June 07, 2022

Ozan Unlu
Edge Delta

Share this

Over the past several years, architectures have become increasingly distributed and datasets have grown at unprecedented rates. Despite these shifts, the tools available to detect issues within your most critical applications and services have remained stuck in a centralized model. In this centralized model, teams must collect, ingest, and index datasets before asking questions upon them to derive any value.

This approach worked well five years ago for most use cases, and now, it still suffices for batching, common information models, correlation, threat feeds, and more. However, when it comes to real-time analytics at large scale — specifically anomaly detection and resolution — there are inherent limitations. As a result, it has become increasingly difficult for DevOps and SRE teams to minimize the impact of issues and ensure high-quality end-user experiences.

In this blog, I'm going to propose a new approach to support real-time use cases — edge observability — that enables you to detect issues as they occur and resolve them in minutes. But first, let' s walk through the current centralized model and the limitations it imposes on DevOps and SRE teams.

Centralized Observability Limits Visibility, Proactive Alerting, and Performance

The challenges created by centralized observability are largely a byproduct of exponential data growth. Shipping, ingesting, and indexing terabytes or even petabytes of data each day is difficult and cost-prohibitive for many businesses. So, teams are forced to predict which datasets meet the criteria to be centralized. The rest is banished to a cold storage destination, where you cannot apply real-time analytics on top of the dataset. For DevOps and SRE teams, this means less visibility and creates the potential that an issue could be present in a non-indexed dataset — meaning the team is unable to detect it.

On top of that, engineers must manually define monitoring logic within their observability platforms to uncover issues in real-time. This is not only time-consuming but puts the onus on the engineer to know every pattern they' d like to alert on upfront. This approach is reactive in nature since teams are often looking for behaviors they' re aware of or have seen before.

Root causing an issue and writing an effective unit test for it has been around for ages, but what happens when you need to detect and resolve an issue that' s never occurred before?

Lastly, the whole process is slow and begs the question, "how fast is real-time?"

Engineers must collect, compress, encrypt, and transfer data to a centralized cloud or data center. Then, they must unpack, ingest, index, and query the data before they can dashboard and alert. These steps naturally create a delta between when an issue actually occurs and when it's alerted upon. This delta grows as volumes increase and query performance degrades.

What is Edge Observability?

To detect issues in real-time and repair them in minutes, teams need to complement traditional observability with distributed stream processing and machine learning. Edge observability uses these technologies to push intelligence upstream to the data source. In other words, it calls for starting the analysis on raw telemetry within an organization' s computing environment before routing to downstream platforms.

By starting to analyze your telemetry data at the source, you no longer need to choose which datasets to centralize and which to neglect. Instead, you can process data as it' s created unlocking complete visibility into every dataset — and in turn, every issue.

Machine learning complements this approach by automatically:

■ baselining the datasets

■ detecting changes in behavior

■ determining the likelihood of an anomaly or issue

■ triggering an alert in real-time

Because these operations are all running at the source, alerts are triggered orders of magnitude faster than is possible with the old centralized approach.

It' s critical to point out that the use of machine learning wipes out the need for engineers to build and maintain complex monitoring logic within an observability platform. Instead, the machine learning picks up on negative patterns — even unknown unknowns — and surfaces the full context of the issue (including the raw data associated with it) to streamline root-cause analysis. Though operationalizing machine learning for real-time insights into high volumes has always proved a challenge at scale, distributing this machine learning gives teams the ability to have full access and deep views into all data sets.

Edge Observability Cuts MTTR from Hours to Minutes

Taking this approach, teams can detect anomalous changes in system behavior as soon as they occur and then pinpoint the affected systems/components in a few clicks — all without requiring an engineer to build regex, define parse statements, or run manual queries.

Organizations of all sizes and backgrounds are seeing the value of edge observability. Some are using it to dramatically reduce debugging times while others are gaining visibility into issues they didn' t know were going on. In all situations, it' s clear that analyzing massive volumes of data in real-time calls for a new approach — and this will only become clearer as data continues to grow exponentially. This new approach starts at the edge.

Ozan Unlu is CEO of Edge Delta
Share this

The Latest

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...