Gartner: 40% of GenAI Solutions Will Be Multimodal by 2027
October 01, 2024
Share this

40% of generative AI (GenAI) solutions will be multimodal (text, image, audio and video) by 2027, up from 1% in 2023, according to Gartner, Inc.

This shift from individual to multimodal models provides an enhanced human-AI interaction and an opportunity for GenAI-enabled offerings to be differentiated.

Erick Brethenoux, Distinguished VP Analyst at Gartner, said, "As the GenAI market evolves towards models natively trained on more than one modality, this helps capture relationships between different data streams and has the potential to scale the benefits of GenAI across all data types and applications. It also allows AI to support humans in performing more tasks, regardless of the environment."

Multimodal GenAI is one of two technologies identified in the 2024 Gartner Hype Cycle for Generative AI, where early adoption has potential to lead to notable competitive advantage and time-to-market benefits. Along with open-source large language models (LLMs), both technologies have high impact potential on organizations within the next five years.

Among the GenAI innovations Gartner expects will reach mainstream adoption within 10 years, two technologies have been identified as offering the highest potential — domain-specific GenAI models and autonomous agents.

"Navigating the GenAI ecosystem will continue to be overwhelming for enterprises due to a chaotic and fast-moving ecosystem of technologies and vendors," said Arun Chandrasekaran, Distinguished VP Analyst at Gartner. "GenAI is in the Trough of Disillusionment with the beginning of industry consolidation. Real benefits will emerge once the hype subsides, with advances in capabilities likely to come at a rapid pace over the next few years."

Multimodal GenAI

Multimodal GenAI will have a transformational impact on enterprise applications by enabling the addition of new features and functionality otherwise unachievable. The impact is not limited to specific industries or use cases, and can be applied at any touchpoint between AI and humans. Today, many multimodal models are limited to two or three modalities, though this will increase over the next few years to include more.

"In the real world, people encounter and comprehend information through a combination of different modalities such as audio, visual and sensing," said Brethenoux. "Multimodal GenAI is important because data is typically multimodal. When single modality models are combined or assembled to support multimodal GenAI applications, it often leads to latency and less accurate results, resulting in a lower quality experience."

Open-Source LLMs

Open-source LLMs are deep-learning foundation models that accelerate enterprise value from the implementation of GenAI, by democratizing commercial access and allowing developers to optimize models for specific tasks and use cases.

Additionally, they provide access to developer communities in enterprises, academia and other research roles that are working toward common goals to improve and make the models more valuable.

"Open-source LLMs increase innovation potential through customization, better control over privacy and security, model transparency, ability to leverage collaborative development, and potential to reduce vendor lock-in," said Chandrasekaran. "Ultimately, they offer enterprises smaller models that are easier and less costly to train, and enable business applications and core business processes."

Domain-Specific GenAI Models

Domain-specific GenAI models are optimized for the needs of specific industries, business functions or tasks. They can improve use-case alignment within the enterprise, while delivering improved accuracy, security and privacy, as well as better contextualized answers. This reduces the need for advanced prompt engineering compared with general-purpose models and can lower hallucination risks through targeted training.

"Domain-specific models can achieve faster time to value, improved performance and enhanced security for AI projects by providing a more advanced starting point for industry-specific tasks," said Chandrasekaran. "This will encourage broader adoption of GenAI because organizations will be able to apply them to use cases where general-purpose models are not performant enough."

Autonomous Agents

Autonomous agents are combined systems that achieve defined goals without human intervention. They use a variety of AI techniques to identify patterns in their environment, make decisions, invoke a sequence of actions and generate outputs. These agents have the potential to learn from their environment and improve over time, enabling them to handle complex tasks.

"Autonomous agents represent a significant shift in AI capabilities," said Brethenoux. "Their independent operation and decision capabilities enable them to improve business operations, enhance customer experiences and enable new products and services. This will likely deliver cost savings, granting a competitive edge. It also poses an organizational workforce shift from delivery to supervision."

Share this

The Latest

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...