Performance monitoring is about understanding what's happening right now. It usually includes dealing with immediate performance problems or collecting data that will be used by the other performance tools (such as capacity planning) to plan for future peak loads.
In performance monitoring you need to know three things:
- The incoming workload
- The resulting resource consumption
- What is normal under this load
Without these three things you can only solve the most obvious performance problems and have to rely on tools outside the scientific realm (such as a Ouija Board, or a Magic 8 Ball) to predict the future.
You need to know the incoming workload (what the users are asking your system to do) because all computers run just fine under no load. Performance problems crop up as the load goes up. These performance problems come in two basic flavors: Expected and Unexpected.
Expected problems are when the users are simply asking the application for more things per second than it can do. You see this during an expected peak in demand like the biggest shopping day of the year. Expected problems are no fun, but they can be foreseen and, depending on the situation, your response might be to endure them, because money is tight or because the fix might introduce too much risk.
Unexpected problems are when the incoming workload should be well within the capabilities of the application, but something is wrong and either the end-user performance is bad or some performance meter makes no sense. Unexpected problems cause much unpleasantness and demand rapid diagnosis and repair.
Know What is Normal
The key to all performance work is to know what is normal. Let me illustrate that with a trip to the grocery store.
One day I was buying three potatoes and an onion for a soup I was making. The new kid behind the cash register looked at me and said: “That will be $22.50.” What surprised me was the total lack of internal error checking at this outrageous price (in 2012) for three potatoes and an onion. This could be a simple case of them not caring about doing a good job, but my more charitable assessment is that he had no idea what “normal” was, so everything the register told him had to be taken at face value. Don't be like that kid.
On any given day you, as the performance person, should be able to have a fairly good idea of how much work the users are asking the system to do and what the major performance meters are showing. If you have a good sense of what is normal for your situation, then any abnormality will jump right out at you in the same way you notice subtle changes in a loved one that a stranger would miss. This can save your bacon because if you spot the unexpected utilization before the peak occurs, then you have time to find and fix the problem before the system comes under a peak load.
There are some challenges in getting this data. For example:
- There is no workload data.
- The only workload data available (ex: per day transaction volume) is at too low a resolution to be any good for rapid performance changes.
- The workload is made of many different transaction types (buy, sell, etc.) It's not clear what to meter.
With rare exception I've found the lack of easily available workload information to be the single best predictor of how bad the overall situation is performance wise. Over the years as I visited company after company this led me to develop Bob's First Rule of Performance Work: “The less a company knows about the work their system did in the last five minutes, the more deeply screwed up they are.”
What meters should you collect? Meters fall into big categories. There are utilization meters that tell you how busy a resource is, there are count meters that count interesting events (some good, some bad), and there are duration meters that tell you how long something took. As the commemorative plate infomercial says: “Collect them all!” Please don't wait for perfection. Start somewhere, collect something and, as you explore and discover, add newly discovered meters to your collection.
When should you run the meters? Your meters should be running all the time (like bank security cameras) so that when weird things happen you have a multitude of clues to look at. You will want to search this data by time (What happened at 10:30?), so be sure to include timestamps.
The data you collect can also be used to predict the future with tools like: Capacity Planning, Load Testing, and Modeling.
This blog is based on: The Every Computer Performance Book available from Amazon and on iTunes.
ABOUT Bob Wescott
Bob Wescott is the author of The Every Computer Performance Book. Since 1987, Wescott has worked in the field of computer performance, doing professional services work and teaching how to do capacity planning, load testing, simulation modeling and web performance for Gomez/Compuware, HyPerformix/CA and Stratus Computer/Technologies. Now, Wescott is mostly retired, and his job is to give back what he has been given. His latest project is The Every Computer Performance Blog based on the book.
Related Links:
The Every Computer Performance Blog
The Latest
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...
High-business-impact outages are costly, and a fast MTTx (mean-time-to-detect (MTTD) and mean-time-to-resolve (MTTR)) is crucial, with 62% of businesses reporting a loss of at least $1 million per hour of downtime ...
Organizations recognize the benefits of generative AI (GenAI) yet need help to implement the infrastructure necessary to deploy it, according to The Future of AI in IT Operations: Benefits and Challenges, a new report commissioned by ScienceLogic ...
Splunk's latest research reveals that companies embracing observability aren't just keeping up, they're pulling ahead. Whether it's unlocking advantages across their digital infrastructure, achieving deeper understanding of their IT environments or uncovering faster insights, organizations are slashing through resolution times like never before ...