Performance monitoring is about understanding what's happening right now. It usually includes dealing with immediate performance problems or collecting data that will be used by the other performance tools (such as capacity planning) to plan for future peak loads.
In performance monitoring you need to know three things:
- The incoming workload
- The resulting resource consumption
- What is normal under this load
Without these three things you can only solve the most obvious performance problems and have to rely on tools outside the scientific realm (such as a Ouija Board, or a Magic 8 Ball) to predict the future.
You need to know the incoming workload (what the users are asking your system to do) because all computers run just fine under no load. Performance problems crop up as the load goes up. These performance problems come in two basic flavors: Expected and Unexpected.
Expected problems are when the users are simply asking the application for more things per second than it can do. You see this during an expected peak in demand like the biggest shopping day of the year. Expected problems are no fun, but they can be foreseen and, depending on the situation, your response might be to endure them, because money is tight or because the fix might introduce too much risk.
Unexpected problems are when the incoming workload should be well within the capabilities of the application, but something is wrong and either the end-user performance is bad or some performance meter makes no sense. Unexpected problems cause much unpleasantness and demand rapid diagnosis and repair.
Know What is Normal
The key to all performance work is to know what is normal. Let me illustrate that with a trip to the grocery store.
One day I was buying three potatoes and an onion for a soup I was making. The new kid behind the cash register looked at me and said: “That will be $22.50.” What surprised me was the total lack of internal error checking at this outrageous price (in 2012) for three potatoes and an onion. This could be a simple case of them not caring about doing a good job, but my more charitable assessment is that he had no idea what “normal” was, so everything the register told him had to be taken at face value. Don't be like that kid.
On any given day you, as the performance person, should be able to have a fairly good idea of how much work the users are asking the system to do and what the major performance meters are showing. If you have a good sense of what is normal for your situation, then any abnormality will jump right out at you in the same way you notice subtle changes in a loved one that a stranger would miss. This can save your bacon because if you spot the unexpected utilization before the peak occurs, then you have time to find and fix the problem before the system comes under a peak load.
There are some challenges in getting this data. For example:
- There is no workload data.
- The only workload data available (ex: per day transaction volume) is at too low a resolution to be any good for rapid performance changes.
- The workload is made of many different transaction types (buy, sell, etc.) It's not clear what to meter.
With rare exception I've found the lack of easily available workload information to be the single best predictor of how bad the overall situation is performance wise. Over the years as I visited company after company this led me to develop Bob's First Rule of Performance Work: “The less a company knows about the work their system did in the last five minutes, the more deeply screwed up they are.”
What meters should you collect? Meters fall into big categories. There are utilization meters that tell you how busy a resource is, there are count meters that count interesting events (some good, some bad), and there are duration meters that tell you how long something took. As the commemorative plate infomercial says: “Collect them all!” Please don't wait for perfection. Start somewhere, collect something and, as you explore and discover, add newly discovered meters to your collection.
When should you run the meters? Your meters should be running all the time (like bank security cameras) so that when weird things happen you have a multitude of clues to look at. You will want to search this data by time (What happened at 10:30?), so be sure to include timestamps.
The data you collect can also be used to predict the future with tools like: Capacity Planning, Load Testing, and Modeling.
This blog is based on: The Every Computer Performance Book available from Amazon and on iTunes.
ABOUT Bob Wescott
Bob Wescott is the author of The Every Computer Performance Book. Since 1987, Wescott has worked in the field of computer performance, doing professional services work and teaching how to do capacity planning, load testing, simulation modeling and web performance for Gomez/Compuware, HyPerformix/CA and Stratus Computer/Technologies. Now, Wescott is mostly retired, and his job is to give back what he has been given. His latest project is The Every Computer Performance Blog based on the book.
Related Links:
The Every Computer Performance Blog
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...