Start with The No-BS Guide to Logging - Part 1
Coming off of the last post outlining the necessity for log management, the process of choosing logging software can seem daunting. The following are major elements of a good log strategy and can also serve as checklist items when you shop for a log management solution:
Collect, Aggregate, Retain
It's crucial to think about your data retention needs and the costs associated with storing them. How long do you need to keep the logs? Do you need them just for troubleshooting, or also for business intelligence type of analysis? Are there regulatory or audit requirements that require you to keep the logs for a certain period of time?
Your daily log volume might already be large, but keep in mind that it doesn't take much to multiply the volume temporarily. For example, a component failure and the resulting log messages in a complex system could easily quadruple the amount of log messages. An external event could have the same effect: if you run an online store, Black Friday might balloon your sales as well as your log volumes. If your log aggregation doesn't scale, you could lose your main troubleshooting foundation when you need it most.
Handle Log Diversity
Log files come in a variety of formats, some following standards and conventions, others completely custom. Your log solution should be able to parse and present the data in a comprehensive form in near real-time, and it should allow to define custom parsing rules. A desirable feature is the ability to add metadata.
Reveal What Matters
Just having a search tool is not enough. To make sense of your log data and the correlation between different data points, you need real-time indexing and parsing, grouping, along with powerful analytics, customizable dashboards, and data visualization. Your log analytics solution should provide a treasure map to the contents of your logs, not just a metal detector that you must use to scan indiscriminately.
Detect Anomalies
Given the volume and complexity of log data, you can't rely on searching for problems. Things you never anticipated happening are typically the type of problems that hurt the most. A good log analytics solution should be able to learn what is “normal” in your log data, and automatically identify and highlight any deviations from norms.
Make Your Own Apps Log
If you write your own code, your log management solution must be able to parse and analyze it. Consider using a well-established data format like JSON (our recommendation) or XML. Whatever you choose, make sure it's plain text format (not binary), that it is human-readable, and easy to parse. Your log solution should be able to easily receive the logs from your application and allow you to set up custom parsing rules if needed.
Be Alert(ed)
Just like every good monitoring application, every good log management solution should allow to send you and your teams alerts based on defined events, like error messages. It should be possible to send these alerts through common third party collaboration tools.
Don't Break the Bank
Cloud technologies made running distributed systems and elastic compute farms affordable for SMBs. The bill for the troubleshooting tools should be affordable, too. There are fully cloud-based SaaS solutions out there, as well as on-premise products and hybrids, which typically come at higher costs (including those for hardware and datacenter footprint).
Key criteria to decide if SaaS or on-premise solutions are right for you are the sensitivity and volume of your data. Security or privacy concerns or regulatory requirements may keep you from transferring data across public networks. Similarly, the sheer data volume could make this impossible or too expensive.
Sven Dummer is Senior Director of Product Marketing at Loggly.
The Latest
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...