Advanced IT Analytics, AIOps, Big Data - What's Really Going On?
August 14, 2018

Dennis Drogseth
EMA

Share this

This question is really two questions.

The first would be: What's really going on in terms of a confusion of terms? — as we wrestle with AIOps, IT Operational Analytics, big data, AI bots, machine learning, and more generically stated "AI platforms" (… and the list is far from complete).

The second might be phrased as: What's really going on in terms of real-world advanced IT analytics deployments — where are they succeeding, and where are they not?

This blog will look at both questions as a way of introducing EMA's newest research with data just coming in from North America and Europe (UK, Germany and France). Like this blog, our research will also examine both questions, with the weight on examining real-world deployments. We hope to have at least a few real answers for you by September, with fresh data and timely analysis.

A Term by Any Other Name …

I'm borrowing, admittedly, from Shakespeare, to suggest that buzzwords in tech often get in the way of understanding real value, even as they seek to clarify it. In the case of what EMA prefers to call "advanced IT analytics" the fugal use of AI, machine learning, and big data, among other terms, often confuses what's really afoot. The real value is almost always in the mixture of science and artistry with which the analytics are applied to various use cases, not a purely academic discussion about what heuristics lie underneath the hood.

But EMA believes there is nevertheless a commonality across all true AIA solutions.

Last summer, EMA embarked on research that strongly indicates that there are common benefits, requirements and challenge surrounding an investment in AIA. Some of the more dramatic benefits typically included values in unifying IT across silos, toolset consolidation, dramatic reductions in mean-time-to-repair and mean time between failures, as well as other use cases that typically ranged from performance and availability management, to change management and capacity optimization, to support for DevOps and SecOps, to optimizing migrations to public cloud. As such we view AIA as a potentially transformative arena for both IT and the business it serves.

In our current research, we will be asking some simple questions regarding terminology and attributes to test the waters, especially in the now prevalent area of AIOps. But we'll also be able to track deployments centering on big data, security-related analytics, capacity-specific analytics and end-user or customer experience analytics, to see what patterns emerge and how they actually differ.

How Do You Make it All Real?

What's currently afoot in operationalizing advanced analytics for IT?

This is the main focus for our research, and it will also help to inform on the first question — what people are actually doing when they champion AIOps, or big data, etc.

Some areas of focus include:

Use cases: Here we are expanding on capacity, security and end-user experience to include cross-domain application/infrastructure availability and performance, DevOps/agile, cost management (including hybrid and multi-cloud), change management, and IoT.

Leadership: Who's leading in investments in advanced IT analytics, and who's leading in overseeing and actually delivering on deployments? What are their objectives, and how are they going about it?

Best practices: Are there any consistent best practices that emerge from the usual laundry list when advanced analytics are being deployed and used? If so, what are they? And how effective are they?

Integrations: How much are investments in advanced analytics being used to assimilate and optimize other toolsets?

Automation: What are the current priorities for integrated automation, where AI and machine learning can help to intelligently and adaptively drive more automated outcomes?

AI bots: Along with general automation priorities, we are looking at AI bot strategies to see how they converge (or don't) with AIOps and other analytics investments.

Technology and data sources: What data sets are IT organizations most hungry for when it comes to advanced analytics? What heuristics do they feel are most critical now, and in the future? How is service modeling and dependency mapping playing in the advanced IT analytics arena?

Roadblocks and benefits: What are the major obstacles remaining in 2018 to effective advanced IT analytics deployments? And what are the more prevalent benefits achieved?

Summing Up

These are admittedly a lot of areas for examination, and once again, the list is not complete. Moreover, we plan to investigate the answers we receive for all these questions from various perspectives, including company size, vertical, geography, roles (what do IT executives think versus more hands-on stakeholders?), success rates and other factors.

Finally, we'll be looking for trends based on the research done in two prior reports: Advanced IT Analytics: A Look at Real-World Adoptions in the Real World March 2016, and The Many Faces of Advanced Operations Analytics September 2014.

What I'm hoping we'll see in September is continued growth toward a more mature, more business-aligned, and more IT-unifying approach to advanced analytics deployments, with a growing number of stakeholders and benefits. I'm also hoping for a more definitive set of AIA profiles, as operations analytics continues to redefine itself away from just "big data," and as the need for more evolved, holistic and dynamic multi-use-case AIA platforms becomes more pronounced.

But it's too soon to tell. The data is still coming in. Nevertheless, I should know soon. In a follow-up blog in the first-half of September I'll be able to present some real news.

Dennis Drogseth is VP at Enterprise Management Associates (EMA)
Share this

The Latest

December 03, 2024

We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...

December 02, 2024

From the accelerating adoption of artificial intelligence (AI) and generative AI (GenAI) to the ongoing challenges of cost optimization and security, these IT leaders are navigating a complex and rapidly evolving landscape. Here's what you should know about the top priorities shaping the year ahead ...

November 26, 2024

In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...

November 25, 2024

In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...