Pepperdata announced that the Pepperdata product portfolio now includes the ability to monitor Graphics Processing Units (GPUs) running big data applications like Spark on Kubernetes.
Workloads that harness tremendous amounts of data, such as machine learning (ML) and artificial intelligence (AI) applications, require GPUs, which were originally designed to accelerate graphics rendering. That extra processing power comes with a high price tag, and it requires near-constant monitoring for resource waste to get the best performance at the lowest possible cost.
Pepperdata now monitors GPU performance, providing the visibility needed for Spark applications running on Kubernetes and utilizing the processing power of GPUs. With this new visibility, companies can improve the performance of their Spark apps running on those GPUs and manage costs at a granular level.
Unlike traditional infrastructure monitoring, which is limited to the platform, the Pepperdata solution provides visibility into GPU resource utilization at the application level. Pepperdata also provides instant recommendations for optimization. Features include:
- Visibility into GPU memory usage and waste
- Fine-tuning of GPU usage through end-user recommendations
- Ability to attribute usage and cost to specific end-users
“Spark on Kubernetes is quickly becoming a dominant part of the compute infrastructure as data-intensive ML and AI applications proliferate,” said Ash Munshi, CEO, Pepperdata. “GPUs can handle these workloads, but they are expensive to buy and are power-intensive. Until now, there hasn’t been a way to view and manage the infrastructure and applications, which can lead to unnecessary waste and overspending for big data workloads. With Pepperdata, organizations can properly size their GPU hardware investments and have the confidence that they are utilizing them well.”
There are products on the market for monitoring GPUs, but they typically lack long-term storage, the ability to scale, and often do not correlate infrastructure metrics to applications. Pepperdata solves these problems with insight for data center operators, data scientists, and ML/AI developers. They can now understand who is using what resources, optimize to eliminate waste so jobs can be tuned and prioritized, and make sure costs are assigned appropriately to the right users or groups across the enterprise.
The Latest
In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...
In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...