Today’s business landscape is saturated with data. Big Data has become one of the most hyped trends in the tech space, and all indicators point to the reality that this volume of data is only going to grow. IDC estimates that we’ll see a 60% growth in structured and unstructured data annually. Global 2000 organizations are investing billions of dollars into harnessing the power of Big Data to help make it meaningful and actionable. In other words, organizations are spending a ton of money in an effort to translate data into information.
Data – in and of itself – is fairly useless. When data is interpreted, processed and analyzed – when its true meaning is unearthed – it becomes useful and is called information. Thus the race between players like Splunk, QlikView and others to be the first or the best to harness the power of Big Data by translating it into actionable information.
Helping data center personnel and enterprise IT professionals translate their data into information by isolating causal versus derived events is really relevant to businesses these days. In most of my explorations, I have discovered that organizations are using a best-of-breed approach to monitoring, in what has resulted in a sort of Balkanization of the data center. In a common use case: network teams may be using Cisco for monitoring, the database teams use Oracle and web server teams uses Nagios. But nothing ties all of that information together in a unified view. There is no monitor of monitors, or manager of managers, so to speak. Let alone a unified view that goes beyond the IT components and maps them to their associated business services.
So what happens when a LAN port fails, and the app server and database server that both communicate through that LAN port also fail as a result? In that scenario, the LAN port failure is the causal event and the app/database server failures are derived events. By being able to quickly distinguish between the two types of events, and isolate the root cause of the failure, the dependent business services can be restored while minimizing negative impact on overall operations.
Standard monitoring solutions will trigger a bunch of red flags showing failures, but in order to make the map “come alive” it needs to be architected and displayed in a topological format. This is what allows easier assessment of root cause versus derived events, and what contributed to a dramatically reduced Meant-Time-To-Know (MTTK) with regard to diagnosing the underlying issues impacting business services.
Best-of-breed monitoring tools should continue to be leveraged in their respective domains, but the most forward-thinking organizations are unifying these tools from a service-centric perspective to create a monitor of monitors that maps IT components to associated business services, and connects with the best-of-breed solutions to create a complete and up-to-date topology that empowers IT to do their jobs more effectively.
Providing IT with the tools required to interpret data meaningfully and isolate the root cause of problems helps to create an informed perspective from which decisions can be made and responses taken.
Tom Molfetto is Marketing Director for Neebula.
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...