The Rise of AI Will Actually Add to the Data Scientist's Plate
October 08, 2024

Sijie Guo
StreamNative

Share this

The data scientist was coined "the sexiest job of the 21st century" not that long ago. Harvard Business Review reported in 2012 that, "capitalizing on big data depends on hiring scarce data scientist." Fast forward to 2024, and we're in the era of generative Artificial Intelligence (AI) and large language models (LLMs) where one might assume that the role of data scientists would simplify or even diminish. Yet, the reality is quite the opposite. As AI becomes more prevalent across all industries, it's expanding the scope and responsibilities of data scientists, particularly in terms of building and managing real-time AI infrastructure.

Traditionally, data scientists focused primarily on analyzing existing datasets, deriving insights, and building predictive models. This included a unique skill set of communicating those findings to leaders within the organization and identifying strategic business recommendations based on their findings. Their toolbox typically included programming languages like Python and R, along with various statistical and machine learning (ML) techniques. The rise of AI is dramatically reshaping this landscape.

Today's data scientists are increasingly required to step beyond their traditional analytical roles. They're now tasked with designing and implementing the very infrastructure that powers AI systems. This shift is driven by the need for real-time data processing and analysis, which is critical for many AI applications.

Real-Time AI Infrastructure: A New Challenge

The demand for real-time AI capabilities is pushing data scientists to develop and manage infrastructure that can handle massive volumes of data in motion. This includes streaming data pipelines, edge computing, scalable cloud architecture, and data quality and governance. These new responsibilities require data scientists to expand their skill sets significantly; They now need to be well-versed in cloud technologies, distributed systems, and data engineering principles.

Organizations are increasingly recognizing the competitive advantage that real-time AI can provide. This is resulting in pressure on data science teams to deliver insights and predictions at unprecedented speeds. The ability to make split-second decisions based on current data is becoming crucial in many industries, from finance and healthcare to retail and manufacturing.

This shift towards real-time AI is not just about speed; it's about relevance and accuracy. By processing data as it's generated, organizations can respond to changes in their environment more quickly and make more informed decisions.

As data scientists take on these new challenges, they're no longer siloed in analytics departments, but instead are becoming integral to various aspects of business operations. This expansion of responsibilities includes:

1. Collaboration with IT and DevOps: Working closely with infrastructure teams to ensure AI systems are robust, scalable, and integrated with existing IT ecosystems.

2. Product Development: Embedding AI capabilities directly into products and services, requiring data scientists to work alongside product teams.

3. Ethical Considerations: Addressing the ethical implications of AI systems, including bias detection and mitigation in real-time environments.

The Emergence of DataOps Engineers

As the complexity of data ecosystems grows, a role has emerged to support data scientists: the DataOps Engineer. This role parallels the DevOps evolution in software development, focusing on creating and maintaining the infrastructure necessary for efficient data operations. DataOps Engineers bridge the gap between data engineering and data science, ensuring that data pipelines are robust, scalable, and capable of supporting advanced AI and analytics initiatives. Their emergence is a direct response to the increasing demands placed on data infrastructure by AI applications.

The rise of DataOps has significant implications for data scientists. In large enterprises, organizations with the resources to employ dedicated DataOps teams can significantly streamline their data pipelines. This allows data scientists to focus more on developing advanced models and extracting actionable insights, rather than getting bogged down in infrastructure management. Smaller companies, which may not have the budget for dedicated DataOps teams, often require data scientists to take on dual roles. This can naturally lead to bottlenecks, with data scientists dividing their time between infrastructure management and actual data analysis.

As a result of these changes, data scientists are now expected to have a broader skill set that includes proficiency in cloud infrastructure (AWS, Azure, GCP), an understanding of modern analytics tools, familiarity with data pipeline tools like Apache Spark and Hadoop, and knowledge of containerization and orchestration platforms like Kubernetes. While not all data scientists need to be experts in these areas, a basic understanding is becoming increasingly important for effective collaboration with DataOps teams and for navigating complex data ecosystems.

The Opportunity Ahead for Data Scientists

While AI is undoubtedly making certain aspects of data analysis more efficient, it's simultaneously expanding the role of data scientists in profound ways. The rise of AI is adding complexity to the data scientist's plate, requiring them to become architects of real-time AI infrastructure in addition to their traditional analytical roles.

This evolution presents both challenges and opportunities. Data scientists who can successfully navigate this changing landscape will be invaluable to their organizations, driving innovation and competitive advantage in the AI-driven future. The rise of AI isn't simplifying the role of data scientists — it's elevating it to new heights of importance and complexity, while also fostering the growth of supporting roles and teams.

Sijie Guo is CEO at StreamNative
Share this

The Latest

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...