As demand for digital services increases and distributed systems become more complex, organizations must collect and process a growing amount of observability data (logs, metrics, and traces). Site reliability engineers (SREs), developers, and security engineers use observability data to learn how their applications and environments are performing so they can successfully respond to issues and mitigate risk.
With use cases expanding across many business units, it's important for organizations to know how users in various roles use observability data. A new report from The Harris Poll and Mezmo explores this concept. Based on a survey of 300 SREs, developers, and security engineers in the US, the study digs into key pain points and how companies might use observability pipelines to help make decisions faster.
Observability Data Is a Part of Daily Usage
More than half of SREs, developers, and security engineers use observability data daily, with another third of people in each role using it two to three times per week. Typical machine data interaction looks different for each role. SREs focus on troubleshooting, analytics, and monitoring uptime; developers on troubleshooting and debugging; and security engineers on cybersecurity, firewall integrity, and threat detection.
The Amount of Data Is Escalating
Data volume is increasing considerably and becoming difficult to control as data is spread across many systems and apps. While respondents in all three roles use a median of four data sources to get their jobs done, SREs and developers often use three separate products to access that data, and security engineers use two. And over the last 12 months, developers and security engineers have seen a median of two new data sources being added, and SREs have seen three.
Adding new data sources and controlling the flow of data has become an overly complex process involving many different tools that don't integrate well and provide delayed insights. Organizations must harness all this data to make real-time business decisions because a slight delay can cause issues.
Difficult to Control Skyrocketing Costs
In addition to data volume, the three groups listed cost control as a top challenge. Specifically, 92% of SREs, 99% of developers, and 97% of security engineers say it's hard to manage the costs of collecting and storing data. High volume of data creates budget pressures across the organization as budgets are not increasing proportionally to the cost. Organizations must look for ways to extract more value from their telemetry data by making data available to wider teams for additional use cases. This requires free flow of usable telemetry data to any platform of choice.
Making Data Actionable with Observability Pipelines
Most professionals in all three roles agree that newly adopted technology, like observability pipelines, must integrate with existing data management platforms. When looking at observability pipelines to help better control and take action on data, all three roles report that supporting cloud data sources is essential. SREs and developers are also interested in making sure that cloud application data sources are supported, while SREs and security engineers need to be sure that there is firewall data source support. However, teams are not just looking for collecting data but need various transformations to add additional context to the data. They are looking for capabilities such as log transformations, sampling, enrichment, and augmentation to make data more meaningful and actionable.
As the report reveals, the importance of observability data is growing, but organizations are challenged with making this data actionable. Observability data pipelines are an emerging technology organizations can use to collect, transform, and route all this data to various teams for greater actionability. Once organizations can understand how different groups use this data, they'll be able to extract greater value for the business.
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...