Unravel Data has joined the Databricks Partner Program to deliver AI-powered data observability into Databricks for granular visibility, performance optimizations, and cost governance of data pipelines and applications.
With this new partnership, Unravel and Databricks will collaborate on Go-To-Market (GTM) efforts to enable Databricks customers to leverage Unravel’s purpose-built AI for the Lakehouse for real-time, continuous insights and recommendations to speed time to value of data and AI products and ensure optimal ROI.
Unravel’s purpose-built AI for Databricks integrates with Lakehouse Monitoring and Lakehouse Observability to deliver performance and efficiency needed to achieve speed and scale for data analytics and AI products. Unravel’s integration with Unity Catalog enables Databricks users to speed up lakehouse transformation by providing real-time, AI-powered cost insights, code-level optimizations, accurate spending predictions, and performance recommendations to accelerate data pipelines and applications for greater returns on cloud data platform investments. Auto Actions and alerts help automate governance with proactive guardrails.
“Most organizations today are receiving unprecedented amounts of data from a staggering number of sources, and they’re struggling to manage it all, which can quickly lead to unpredictable cloud data spend. This combination of rapid lakehouse adoption and the hyperfocus companies have on leveraging AI/ML models for additional revenue and competitive advantage, brings the importance of data observability to the forefront,” said Kunal Agarwal, CEO and co-founder, Unravel Data. “Lakehouse customers who use Unravel can now achieve the agility required for AI/ML innovation while having the predictability and cost governance guardrails needed to ensure a strong ROI.”
Unravel’s purpose-built AI for Databricks delivers insights based on Unravel’s deep observability at the job, user, and code level to supply AI-driven cost efficiency recommendations, including compute provisioning, query performance, autoscaling efficiencies, and more.
Unravel for Databricks enables organizations to:
- Speed cloud transformation initiatives by having real-time cost visibility, predictive spend forecasting, and performance insights for their workloads
- Enhance time to market of new AI initiatives by mitigating potential pipeline bottlenecks and associated costs before they occur
- Better manage and optimize the ROI of data projects with customized dashboards and alerts that offer insights on spend, performance, and unit economics
Unravel’s integration with popular DevOps tools like GitHub and Azure DevOps provides actionability in CI/CD workflows by enabling early issue detection during the code-merge phase and providing developers real-time insights into potential financial impacts of their code changes. This results in fewer production issues and improved cost efficiency.
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...