Unravel Data introduced new migration, cost analytics and architectural mapping capabilities for Unravel for Azure Databricks, which is now generally available from Unravel and in the Azure Marketplace.
The move further solidifies Unravel’s mission to support modern data workloads wherever they exist, whether on-premises, in the public cloud or a hybrid setting.
“With more and more big data deployments moving to the public cloud, Unravel has spent the last several years helping to simplify the process of cloud migration as well as improving the management and optimization of modern data workloads once in the cloud. We have recently introduced platforms for all major public cloud platforms,” said Bala Venkatrao, Chief Product Officer, Unravel Data. “This release, highlighted by the industry’s only slice and dice migration capabilities, makes it easier than ever to move data workloads to Azure Databricks, while minimizing costs and increasing performance. The platform also allows enterprises to unify their data pipelines end-to-end, such as Azure Databricks and Azure HDInsight.”
Unravel for Azure Databricks delivers comprehensive monitoring, troubleshooting, and application performance management for Azure Databricks environments.
The new additions to the platform include:
- Slice and dice migration support – Unravel now includes migration intelligence to help customers assess their migration planning to Azure Databricks in version 4.5.5.0. Slice and dice migration support provides impact analysis by applications and workloads. It also features recommended cloud cluster topology and cost estimates by service-level agreement (SLA), as well as auto-scaling impact trend analysis as a result of cloud migration.
- Cost analytics – Unravel will soon add new cost management capabilities to help optimize Azure Databricks workloads as they scale. These new features include cost assurance, cost planning and cost forecasting tools. Together, these tools provide granular detail of individual jobs in Azure Databricks, providing visibility at the workspace, job, and job-run level to track costs or DBUs over time.
- Detailed architectural recommendations: Unravel for Azure Databricks will soon include right-sizing, a feature that recommends virtual machine or workload types that will achieve the same performance on cheaper clusters.
Unravel for Azure Databricks helps operationalize Spark apps on the platform: Azure Databricks customers can shorten the cycle of getting Spark applications into production by relying on the visibility, operational intelligence, and data driven insights and recommendations that only Unravel can provide. Users enjoy greater productivity by eliminating the time spent on tedious, low value tasks such as log data collection, root cause analysis and application tuning.
In addition to being generally available directly from Unravel, Unravel for Azure Databricks is also available on the Azure Marketplace.
The Latest
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...
If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...