Universal Monitoring Crimes and What to Do About Them - Part 1
May 22, 2018

Leon Adato
SolarWinds

Share this

Monitoring is a critical aspect of any data center operation, yet it often remains the black sheep of an organization's IT strategy: an afterthought rather than a core competency. Because of this, many enterprises have a monitoring solution that appears to have been built by a flock of "IT seagulls" — technicians who swoop in, drop a smelly and offensive payload, and swoop out. Over time, the result is layer upon layer of offensive payloads that are all in the same general place (your monitoring solution) but have no coherent strategy or integration.

Believe it or not, this is a salvageable scenario. By applying a few basic techniques and monitoring discipline, you can turn a disorganized pile of noise into a monitoring solution that provides actionable insight. For the purposes of this piece, let's assume you've at least implemented some type of monitoring solution within your environment.

At its core, the principle of monitoring as a foundational IT discipline is designed to help IT professionals escape the short-term, reactive nature of administration, often caused by insufficient monitoring, and become more proactive and strategic. All too often, however, organizations are instead bogged down by monitoring systems that are improperly tuned — or not tuned at all — for their environment and business needs. This results in unnecessary or incorrect alerts that introduce more chaos and noise than order and insight, and as a result, cause your staff to value monitoring even less.

So, to help your organization increase data center efficiency and get the most benefit out of your monitoring solutions, here are the top five universal monitoring crimes and what you can do about them:

1. Fixed thresholds

Monitoring systems that trigger any type of alert at a fixed value for a group of devices are the "weak tea" of solutions. While general thresholds can be established, it is statistically impossible that every single device is going to adhere to the same one, and extremely improbable that even a majority will.

Even a single server has utilization that varies from day to day. A server that usually runs at 50 percent CPU, for example, but spikes to 95 percent at the end of the month is perfectly normal — but fixed thresholds can cause this spike to trigger. The result is that many organizations create multiple versions of the same alert (CPU Alert for Windows IIS-DMZ; CPU Alert for Windows IIS-core; CPU Alert for Windows Exchange CAS, and so on). And even then, fixed thresholds usually throw more false positives than anyone wants.

What to do about it:

■ GOOD: Enable per-device (and per-service) thresholds. Whether you do this within the tool or via customizations, you should ultimately be able to have a specific threshold for each device so that machines that have a specific threshold trigger at the correct time, and those that do not get the default.

■ BETTER: Use existing monitoring data to establish baselines for "normal" and then trigger when usage deviates from that baseline. Note that you may need to consider how to address edge cases that may require a second condition to help define when a threshold is triggered.

2. Lack of monitoring system oversight

While it's certainly important to have a tool or set of tools that monitor and alert on mission-critical systems, it's also important to have some sort of system in place to identify problems within the monitoring solution itself.

What to do about it: Set up a separate instance of a monitoring solution that keeps track of the primary, or production, monitoring system. It can be another copy of the same tool or tools you are using in production, or a separate solution, such as open source, vendor-provided, etc.

For another option to address this, see the discussion on lab and test environments in Part 2 of this blog.

3. Instant alerts

There are endless reasons why instant alerts — when your monitoring system triggers alerts as soon as a condition is detected — can cause chaos in your data center. For one thing, monitoring systems are not infallible and may detect "false positive" alerts that don't truly require a remediation response. For another, it's not uncommon for problems to appear for a moment and then disappear. Still some other problems aren't actionable until they've persisted for a certain amount of time. You get the idea.

What to do about it: Build a time delay into your monitoring system's trigger logic where a CPU alert, for example, would need to have all of the specified conditions persist for something like 10 minutes before any action would be needed. Spikes lasting longer than 10 minutes would require more direct intervention while anything less represents a temporary spike in activity that doesn't necessarily indicate a true problem.

Read Universal Monitoring Crimes and What to Do About Them - Part 2, for more monitoring tips.

Leon Adato is a Head Geek at SolarWinds
Share this

The Latest

November 07, 2024

On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...

November 06, 2024

Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...

November 05, 2024

The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...

November 04, 2024

Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...

November 01, 2024

Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...

October 31, 2024

Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...

October 30, 2024

On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...

October 29, 2024

Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...

October 28, 2024

Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...

October 24, 2024

High-business-impact outages are costly, and a fast MTTx (mean-time-to-detect (MTTD) and mean-time-to-resolve (MTTR)) is crucial, with 62% of businesses reporting a loss of at least $1 million per hour of downtime ...