To help your organization increase data center efficiency and get the most benefit out of your monitoring solutions, here are the remaining universal monitoring crimes and what you can do about them:
Start with Universal Monitoring Crimes and What to Do About Them - Part 1
4. Flapping or sawtoothing alerts
When an alert repeatedly triggers (a device that keeps rebooting itself or processes keep deleting/creating temporary page files so that one moment it's over threshold, the next it's below, for example), that condition is known as flapping or sawtoothing.
What to do about it: These types of alerts have several possible resolutions based on what is supported by your monitoring solution and which best fits the specific situation:
■ GOOD: Suppress events within a window. Ignoring duplicated events within a certain period of time is often all you need to avoid meaningless duplicates.
■ ALSO GOOD: As mentioned previously, add a time delay to allow for self-resolution, avoid false-positives, and eliminate other potential issues that don't necessarily require a remediation response.
■ BETTER: Leverage "Reset" logic. Wait for a reset event before triggering a new alert of the same kind. Avoid making the reset logic merely the reverse of the trigger (if the alert is > 90%, the reset might be < 90%). Instead, code the reset rules separately so that you might trigger when disk > 90% for 15 minutes, but it won't reset until it's < 80% for 30.
■ BEST: Two-way communication with a ticket or alert management system. This is where the monitoring system communicates with the ticket and/or alert tracking system, so you can never cut the same alert for the same device until a human has actively corrected the original problem and closed the ticket.
5. No lab, test, or QA environments for your monitoring system
If your monitoring system is watching and alerting on mission-critical systems within the enterprise, then it is mission critical itself. But despite the fact that many organizations set up a proof-of-concept environment when evaluating monitoring solutions, once the production system is selected and rolled out, they fail to have any type of lab, test, or QA system that is maintained on an ongoing basis to help ensure the system is maintained.
What to do about it: Duh. Implement test, dev, and/or QA installations that serve to ensure your monitoring system has the oversight necessary for a mission-critical application.
■ TEST: An (often temporary) environment where patches and upgrades can be tested before attempting them in production.
■ DEV: An environment that mirrors production in terms of software, but where monitors for new equipment, applications, reports, or alerts can be set up and tested before rolling those solutions to production. And as mentioned earlier, this is the perfect place to also monitor your production monitoring environment.
■ QA: An environment that mirrors the previous version of production, so that if issues are found in production, they can be double-checked to confirm whether the problem was introduced in the last revision.
Note that I'm not implying you necessarily must have all three, but it's worth considering the value of at least one. Because "none" is a really bad choice.
Final thoughts
The rate of technical change in the data center today is rapidly accelerating and traditional data center systems have undergone considerable evolution in a very short period of time. As complexity continues to grow alongside the expectation that an organization's IT department should become ever-more "agile" and continue to deliver a quality end-user experience 24/7 (meaning no glitches, outages, application performance problems, etc.), it's important that IT professionals give monitoring the priority it deserves as a foundational IT discipline.
By understanding and addressing these top universal monitoring crimes, you can ensure your organization receives the benefit of sophisticated, tuned monitoring systems while also enabling a more proactive data center strategy now and in the future.
The Latest
We're at a critical inflection point in the data landscape. In our recent survey of executive leaders in the data space — The State of Data Observability in 2024 — we found that while 92% of organizations now consider data reliability core to their strategy, most still struggle with fundamental visibility challenges ...
From the accelerating adoption of artificial intelligence (AI) and generative AI (GenAI) to the ongoing challenges of cost optimization and security, these IT leaders are navigating a complex and rapidly evolving landscape. Here's what you should know about the top priorities shaping the year ahead ...
In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...
In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...
Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...
New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...
Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...
SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...
Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...
AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...