Web Performance and the Impact of SPDY, HTTP/2 & QUIC - Part 4
May 25, 2016

Jean Tunis
RootPerformance

Share this

This blog is the fourth in a 5-part series on APMdigest where I discuss web application performance and how new protocols like SPDY, HTTP/2, and QUIC will hopefully improve it so we can have happy website users.

Start with Web Performance 101: The Bandwidth Myth

Start with Web Performance 101: 4 Recommendations to Improve Web Performance

Start with Web Performance and the Impact of SPDY, HTTP/2 & QUIC - Part 1

Start with Web Performance and the Impact of SPDY, HTTP/2 & QUIC - Part 2

Start with Web Performance and the Impact of SPDY, HTTP/2 & QUIC - Part 3

The new HTTP/2 protocol includes a number of things that did not exist at all in HTTP before:

Uses only one TCP connection

In HTTP/1.1, we needed many connections, but not too many due to resource constraints and latency considerations. In HTTP/2, the standard calls for only one TCP connection to be used. This will reduce the overhead of opening and closing TCP connections and reduce the round-trip time (RTT) of going to the server and back for numerous requests.

Requests are multiplexed

What allows the one-connection capability to occur and not impact performance is the ability of requests to be multiplexed. HTTP requests are broken up into streams, and each stream can be sent down one connection. This is what pipelining was hoping to achieve, but did not.

It's binary, not text-based to allow for multiplexing

The ability to multiplex the HTTP requests is enabled by the fact that the protocol is now binary. HTTP/1.1 is a text-based protocol, which make it difficult to break up HTTP data for the multiplexing capability needed.

Compresses headers

One of the recommendations to help improve performance is to enable caching on the server. Since web browsers generally support caching, returns to the browser would not have to re-download the same data it previously downloaded. This will save a round-trip request, and users get their request almost instantaneously, depending of the performance of their PC.

The drawback of all this caching is the data in the HTTP header used to identify whether data is cached via a cookie. The size of the cookies have gotten bigger and bigger over the years. Most browsers allow a cookie to be about 4KB. With this size, an HTTP request can sometimes be mostly of cookie data in the header.

Compression also occurs with a new format called HPACK, defined in RFC 7541. This compression format replaces GZIP because of a security risk (CRIME) discovered in 2012 discovered about this format.

Compressing the headers helps to reduce the growth of the HTTP headers.

Has different frame types: headers and data

At the core of the performance improvement gains expected of HTTP/2 is the new binary framing format. Each HTTP message is encoded in binary format. With this format, HTTP/2 introduces different types of frames that are part of a message. Instead of having an HTTP message with the headers and the payload in one frame, there are frames only for data and frames only for header information. There are in total ten new frame types in HTTP/2, which help allow for the new capabilities.

Prioritizes requests sent

HTTP/2 allows for the browser to be able to prioritize requests that are sent. Higher priority requests can go ahead of other requests via the multiplexing mechanism. This is done with the PRIORITY frame type.

Can reset HTTP/2 stream instead of TCP connection

In HTTP/1.1, when a request is complete, the connection can be reset and closed by either end. The problem is that it means if you want to use that connection again, you have to open it, and hence another trip to the server.

With HTTP/2, we can now reset a HTTP stream inside of a TCP connection. This allows for close and reusing another stream, without tearing down the TCP connection, and requiring another trip to the server when we need to send some data down that connection. This is done with the RST_STREAM frame type.

Servers can push data to browser

Web servers now have the ability to push content directly to client browsers even if they are not explicitly requested. It means that when a client, for example, makes a request for a particular page, the server will automatically push any additional data, such as Javascript or CSS files, required to properly render the page. This removes the need for the browser to make more requests for those files, which would create additional round-trips.

The server must specify to the client that it will be pushing content to it before it does so. This is done via the PUSH_PROMISE frame type.

Controls the flow of data

The TCP protocol has the ability to control the flow of data by opening and closing the TCP congestion window. When the receiver needs to slow down the other side, it does so by reducing its window.

With HTTP/2, we have one connection, and if that happens, everything slows down.

But with the capability of having multiplexed streams, HTTP/2 was given the ability to provide for its own flow control at the stream and connection level. This way, if a stream of data needs to be slow down, other streams are not impacted, and the TCP connection continues to operates appropriately.

This is done via the WINDOW_UPDATE frame type.

Read Web Performance and the Impact of SPDY, HTTP/2 & QUIC - Part 5, the last installment in this blog series, taking a final look at HTTP/2.

Jean Tunis is Principal Consultant and Founder of RootPerformance
Share this

The Latest

November 26, 2024

In the heat of the holiday online shopping rush, retailers face persistent challenges such as increased web traffic or cyber threats that can lead to high-impact outages. With profit margins under high pressure, retailers are prioritizing strategic investments to help drive business value while improving the customer experience ...

November 25, 2024

In a fast-paced industry where customer service is a priority, the opportunity to use AI to personalize products and services, revolutionize delivery channels, and effectively manage peaks in demand such as Black Friday and Cyber Monday are vast. By leveraging AI to streamline demand forecasting, optimize inventory, personalize customer interactions, and adjust pricing, retailers can have a better handle on these stress points, and deliver a seamless digital experience ...

November 21, 2024

Broad proliferation of cloud infrastructure combined with continued support for remote workers is driving increased complexity and visibility challenges for network operations teams, according to new research conducted by Dimensional Research and sponsored by Broadcom ...

November 20, 2024

New research from ServiceNow and ThoughtLab reveals that less than 30% of banks feel their transformation efforts are meeting evolving customer digital needs. Additionally, 52% say they must revamp their strategy to counter competition from outside the sector. Adapting to these challenges isn't just about staying competitive — it's about staying in business ...

November 19, 2024

Leaders in the financial services sector are bullish on AI, with 95% of business and IT decision makers saying that AI is a top C-Suite priority, and 96% of respondents believing it provides their business a competitive advantage, according to Riverbed's Global AI and Digital Experience Survey ...

November 18, 2024

SLOs have long been a staple for DevOps teams to monitor the health of their applications and infrastructure ... Now, as digital trends have shifted, more and more teams are looking to adapt this model for the mobile environment. This, however, is not without its challenges ...

November 14, 2024

Modernizing IT infrastructure has become essential for organizations striving to remain competitive. This modernization extends beyond merely upgrading hardware or software; it involves strategically leveraging new technologies like AI and cloud computing to enhance operational efficiency, increase data accessibility, and improve the end-user experience ...

November 13, 2024

AI sure grew fast in popularity, but are AI apps any good? ... If companies are going to keep integrating AI applications into their tech stack at the rate they are, then they need to be aware of AI's limitations. More importantly, they need to evolve their testing regiment ...

November 12, 2024

If you were lucky, you found out about the massive CrowdStrike/Microsoft outage last July by reading about it over coffee. Those less fortunate were awoken hours earlier by frantic calls from work ... Whether you were directly affected or not, there's an important lesson: all organizations should be conducting in-depth reviews of testing and change management ...

November 08, 2024

In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...