APM and ITOA: Clearing Up the Confusion
April 11, 2016

Guy Warren
ITRS Group

Share this

I was reading a discussion on a social media site about Application Performance Management, and realized that there is a lot of confusion about what is Application Performance Monitoring, Application Performance Management (APM) and IT Operational Analytics (ITOA).

Just looking at the words used, you would believe that Application Performance Monitoring is focused on watching data and monitoring it for a particular condition or state. Application Performance Management would lead you to believe that this is a wider field which includes a range of techniques to certainly monitor the application, but also to manage other aspects of the IT estate. The degree to which complex analytics are used is unclear, but potentially IT Operational Analytics could be seen as a subset of Application Performance Management, although the focus on application might make it more limited in its scope than ITOA.

To help clarify this rather muddy set of terms, we use two models which we find are much clearer and logical, and have less ambiguity than the APM and ITOA definitions.

The Monitoring Maturity Model

The first model we call the Monitoring Maturity Model, because it is a layered model where generally the higher levels are based on data collected from the lower levels. The model is:

1. Infrastructure Monitoring: Collection data on the servers, operating systems, network and storage and setting rule based alerts to catch potential problems.

2. Basic Application Monitoring: From interrogating the Operating System, capture and alert on data about the processes running on the servers. This would include CPU & memory utilization, disk I/O, network I/O etc.

3. Advanced Application Monitoring: Installing a tailored agent on the server which is capturing data specific to the application it is monitoring. This can be "inside the app" data or "outside the app" which is useful for Off the Shelf software products and middleware.

4. Flow Monitoring: This is capturing data about the information passing between applications and monitoring/reporting on data flows. This would include volumes/second, volumes per counterparty, latency etc.

5. Business and IT Analysis: This is the analysis of both business data and "machine" data from levels 1 and 2 to understand the business activity and the behavior of the IT estate.

Monitoring vs Analytics

The second model is separating monitoring from analytics. There is no hard definition which separates them so we break the types of analysis into three types:

1. Detect: This is a rule based detection of an alert condition. This is generally what people mean when they talk about Monitoring.

2. Analyze: This is the collection of lots of data, even data which did not trigger a rule in Detect, and analyzing it to discover more insight. This may be as simple as trends, or as complex as Machine Learning and time series pattern based Anomaly Detection. This would also include techniques like Bayesian Network Causal Analysis.

3. Predict: This uses current and historic data to try and predict future or “what if” scenarios. Again, this can be as simple as extrapolation, or as complex as comparison of current state to empirically derived behavioral data, the likes of which you might have gathered in a performance lab when stress testing an application.

Whichever way you model your IT estate and the behavior of your applications, it is necessary to have a clear language so that people are talking about the same thing.

Guy Warren is CEO of ITRS Group.

Share this

The Latest

July 21, 2017

Public sector organizations undergoing digital transformation are losing confidence in IT Operations' ability to manage the influx of new technologies and evolving expectations, according to the 2017 Splunk Public Sector IT Operations Survey ...

July 20, 2017

It's no surprise that web application quality is incredibly important for businesses; 99 percent of those surveyed by Sencha are in agreement. But despite technological advances in testing, including automation, problems with web application quality remain an issue for most businesses ...

July 19, 2017

Market hype and growing interest in artificial intelligence (AI) are pushing established software vendors to introduce AI into their product strategy, creating considerable confusion in the process, according to Gartner. Analysts predict that by 2020, AI technologies will be virtually pervasive in almost every new software product and service ...

July 18, 2017

Organizations are encountering user, revenue or customer-impacting digital performance problems once every five days, according a new study by Dynatrace. Furthermore, the study reveals that individuals are losing a quarter of their working lives battling to address these problems ...

July 17, 2017
Mobile devices account for more than 60 percent of all digital minutes in all 9 markets profiled in comScore's report: Mobile’s Hierarchy of Needs ...
July 14, 2017

Cloud adoption is still the most vexing factor in increased network complexity, ahead of the internet of things (IoT), software-defined networking (SDN), and network functions virtualization (NFV), according to a new survey conducted by Kentik ...

July 13, 2017

Gigabit speeds and new technologies are driving new capabilities and even more opportunities to innovate and differentiate. Faster compute, new applications and more storage are all working together to enable greater efficiency and greater power. Yet with opportunity comes complexity ...

July 12, 2017

Achieving broad competence in event-driven IT will be a top three priority for the majority of global enterprise CIOs by 2020, according to Gartner, Inc. Defining an event-centric digital business strategy will be key to delivering on the growth agenda that many CEOs see as their highest business priority ...

July 11, 2017

It's not especially surprising that a new IT survey shows that cloud use for business and government poses challenges. In significant numbers across the board, respondents cited cloud complexity, compliance and security, cost control, speed of delivery, and domain expertise as the cloud problems their organizations were working to overcome this year ...

July 10, 2017
Your organization's Application Management and IT Help Desk teams are your "first line of defense," and they also wear many hats. One of the biggest challenges they face is the management of application portfolios. To help ensure your application and help desk operations are effective and manageable, there are a few simple things that IT leaders can do ...