Elastic Adds Machine Learning into the Elastic Stack
May 16, 2017
Share this

Elastic, the company behind Elasticsearch, and the Elastic Stack, introduced their first machine learning capabilities in Elastic's 5.4 release.

Based on the recent acquisition of Prelert, the new capabilities address the growing desire for customers to utilize machine learning technology, without the need for specialist in-house knowledge and custom development. Elastic’s new machine learning features provide a ready-built solution for any time series dataset, which automatically identifies anomalies, streamlines root cause analysis, and reduces false positives within real-time applications. The technology delivers rapid business benefits for companies trying to spot infrastructure problems, cyber attacks, or business issues in real-time.

"Our vision is to take the complexity out and make it simple for our users to deploy machine learning within the Elastic Stack for use cases like logging, security, and metrics," said Shay Banon, Elastic Founder and CEO. "I’m excited that our new unsupervised machine learning capabilities will give our users an out-of-the-box experience, at scale to find anomalies in their time series data, and in a way that is a natural extension of search and analytics."

Now available in the 5.4 release as a feature in X-Pack, the first set of Elastic’s unsupervised machine learning features automates anomaly detection in time series data, such as log files, application and performance metrics, network flows, or financial/transaction data. By utilizing existing and continuous data stored in Elasticsearch, Elastic’s new machine learning capabilities provide users with an out-of-box experience to operationalize their workstreams and use cases like logging, security analytics, and metrics analytics, in real-time, create sophisticated machine learning jobs using a familiar, user-friendly Kibana UI, and minimize complexity and painful integration.

Additional benefits include:

- Installs into Elasticsearch and Kibana with a single command as part of X-Pack

- Native integration with the Elastic Stack; no need to move data out of Elasticsearch

- An intuitive UI for creating machine learning jobs and analyzing anomaly detection results across diverse data types (log messages, network traffic, metrics)

- Runs within Elasticsearch - highly scalable and highly available

- Full support for X-Pack’s alerting features for proactive notifications

Share this

The Latest

May 22, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 5 offers some interesting final thoughts ...

May 19, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 4 covers automation and the dynamic IT environment ...

May 18, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 3 covers monitoring and user experience ...

May 17, 2017

APMdigest asked experts across the industry for their opinions on the next steps for ITOA. Part 2 covers visibility and data ...

May 16, 2017

Managing application performance today requires analytics. IT Operations Analytics (ITOA) is often used to augment or built into Application Performance Management solutions to process the massive amounts of metrics coming out of today's IT environment. But today ITOA stands at a crossroads as revolutionary technologies and capabilities are emerging to push it into new realms. So where is ITOA going next? With this question in mind, APMdigest asked experts across the industry — including analysts, consultants and vendors — for their opinions on the next steps for ITOA ...

May 15, 2017

Digital transformation initiatives are more successful when they have buy-in from across the business, according to a new report titled Digital Transformation Trailblazing: A Data-Driven Approach ...

May 11, 2017

The growing market for analytics in IT is one of the more exciting areas to watch in the technology industry. Exciting because of the variety and types of vendor innovation in this area. And exciting as well because our research indicates the adoption of advanced IT analytics supports data sharing and joint decision making in a way that's catalytic for both IT and digital transformation ...

May 10, 2017

Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and the challenges and recommendations for AIOps adoption ...

May 09, 2017

In APMdigest's exclusive interview, Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and how it will impact ITOA and APM ...

May 05, 2017

Microsoft is expected to essentially wind down Windows 7 support by 2020 so inevitably Windows 10 will be on the IT task list. It would be beneficial, now, to examine some of the issues relating to migrating to Windows 10 OS and how these pain points can be alleviated and addressed. Here are 7 practices that are key to facilitating migration ...