Elastic Adds Machine Learning into the Elastic Stack
May 16, 2017
Share this

Elastic, the company behind Elasticsearch, and the Elastic Stack, introduced their first machine learning capabilities in Elastic's 5.4 release.

Based on the recent acquisition of Prelert, the new capabilities address the growing desire for customers to utilize machine learning technology, without the need for specialist in-house knowledge and custom development. Elastic’s new machine learning features provide a ready-built solution for any time series dataset, which automatically identifies anomalies, streamlines root cause analysis, and reduces false positives within real-time applications. The technology delivers rapid business benefits for companies trying to spot infrastructure problems, cyber attacks, or business issues in real-time.

"Our vision is to take the complexity out and make it simple for our users to deploy machine learning within the Elastic Stack for use cases like logging, security, and metrics," said Shay Banon, Elastic Founder and CEO. "I’m excited that our new unsupervised machine learning capabilities will give our users an out-of-the-box experience, at scale to find anomalies in their time series data, and in a way that is a natural extension of search and analytics."

Now available in the 5.4 release as a feature in X-Pack, the first set of Elastic’s unsupervised machine learning features automates anomaly detection in time series data, such as log files, application and performance metrics, network flows, or financial/transaction data. By utilizing existing and continuous data stored in Elasticsearch, Elastic’s new machine learning capabilities provide users with an out-of-box experience to operationalize their workstreams and use cases like logging, security analytics, and metrics analytics, in real-time, create sophisticated machine learning jobs using a familiar, user-friendly Kibana UI, and minimize complexity and painful integration.

Additional benefits include:

- Installs into Elasticsearch and Kibana with a single command as part of X-Pack

- Native integration with the Elastic Stack; no need to move data out of Elasticsearch

- An intuitive UI for creating machine learning jobs and analyzing anomaly detection results across diverse data types (log messages, network traffic, metrics)

- Runs within Elasticsearch - highly scalable and highly available

- Full support for X-Pack’s alerting features for proactive notifications

Share this

The Latest

June 28, 2017

In 2017, every second counts and even minor issues can have a significant impact on the success or failure of a brand interaction. Our latest research found that two thirds of people have rising expectations for digital performance, showing that businesses can expect consumer pressure to grow. The App Attention Index 2017 revealed just how unforgiving consumers are of badly performing digital services ...

June 27, 2017

In today's everchanging IT industry, network engineers face a slew of challenges when it comes to network management. As networks continue to grow and become more complex, many IT professionals struggle to get a grasp on key workflows in which network engineers still rely on manual processes, including network documentation, troubleshooting, change management and cybersecurity ...

June 26, 2017

Many organizations are struggling to resolve customer-impacting incidents quickly enough to preserve brand loyalty and revenue, according to PagerDuty's recent State of Digital Operations Report ...

June 23, 2017

"Become the Automator, Not the Automated." While it's a simple enough phrase, it speaks directly to how today's organizations and IT teams must innovate to remain competitive. A critical aspect of innovation is acknowledging the digital transformation of businesses. The move to digitalization enables organizations to more effectively unlock the power of information technology (IT) to fuel and accelerate business innovation. It is a competitive weapon and a survival imperative ...

June 22, 2017

Executives in the US and Europe now place broad trust in Artificial Intelligence (AI) and machine learning systems, designed to protect organizations from more dynamic pernicious cyber threats, according to Radware's 2017 Executive Application & Network Security Survey ....

June 21, 2017

While IT service management (ITSM) has too often been viewed by the industry as an area of reactive management with fading process efficiencies and legacy concerns, a new study by Enterprise Management Associates (EMA) reveals that, in many organizations, ITSM is becoming a hub of innovation ...

June 20, 2017

Cloud is quickly becoming the new normal. The challenge for organizations is that increased cloud usage means increased complexity, often leading to a kind of infrastructure "blind spot." So how do companies break the blind spot and get back on track? ...

June 19, 2017

Hybrid IT is becoming a standard enterprise model, but there’s no single playbook to get there, according to a new report by Dimension Data entitled The Success Factors for Managing Hybrid IT ...

June 16, 2017

Any mobile app developer will tell you that one of the greatest challenges in monetizing their apps through video ads isn't finding the right demand or knowing when to run the videos; it's figuring out how to present video ads without slowing down their apps ...

June 15, 2017

40 percent of UK retail websites experience downtime during seasonal peaks, according to a recent study by Cogeco Peer 1 ...